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ABSTRACT

Exponentially-growing genomic data after the advent of gene sequencing technolo-

gies shifted the emphasis on to the analysis of many datasets from as many sources

as possible. Data from multiple sources in the form of matrices and tensors can be

analyzed separately, or they can be coupled and decomposed simultaneously. This

data deluge is also observed in patient datasets of tuberculosis (TB), an infectious

disease caused by Mycobacterium tuberculosis complex (MTBC). Epidemiologists,

clinicians, and health care practitioners aim to find transmission routes, detect or

rule out possible outbreaks, and control TB. For this purpose, patient isolates are

routinely genotyped by multiple biomarkers which include spacer oligonucleotide

types (spoligotypes) and Mycobacterial Interspersed Repetitive Units - Variable

Number Tandem Repeats (MIRU-VNTR). Now it remains to make inferences from

this data congestion. In this thesis, we propose algorithmic data fusion methods

for tuberculosis using multiple sources of information from MTBC strains and TB

patients.

In the first study, we propose the Tensor Clustering Framework (TCF) on

multiple-biomarker tensors (MBT) and subdivide major lineages of MTBC into

sublineages via genomic data fusion. The MBT holds data from two biomarkers,

spoligotypes and MIRU patterns. We factorize the MBT into its component matrices

using multiway models. Based on the component matrix of strain mode, we cluster

MTBC strains into sublineages. Our new definition of sublineages based on two

biomarkers confirms some of the existing sublineages, and suggests subdividing or

merging other sublineages.

In the second study, we propose a new mutation model of spoligotypes based on

both spoligotypes themselves and MIRU patterns. The model uses a maximum par-

simony method based on three genetic distance measures on these two biomarkers.

The resulting putative mutation history of spoligotypes depicted via a spoligoforest

shows notable topological attributes. Number of descendant spoligotypes follows

a power-law distribution. In addition, number of mutations at each spacer in the

xviii



DR region follows a spatially bimodal distribution. Based on this observation, we

built two alternative models for mutation length frequency: Starting Point Model

(SPM) and Longest Block Model (LBM). Both models plausibly fit mutation length

frequency distribution in the spoligoforest.

In the third study, we propose the Unified Biclustering Framework (UBF)

for host-pathogen association analysis of tuberculosis patients via genome-phenome

data fusion. UBF is flexible in the sense that we can incorporate genetic distance

between MTBC strains, spatial distance between TB patients, and time into domain

knowledge, and factorize these joint datasets via coupled matrix-matrix and matrix-

tensor factorization. We calculate feature pattern similarity matrix of (spoligotype,

country) pairs and use it as input to our novel density-invariant biclustering algo-

rithm. Finally, we select statistically significant biclusters using average best-match

score. The resulting biclusters verify some of the well-known host-pathogen associ-

ations between MTBC strains and geographic distribution of their hosts, as well as

suggest new patient-strain relationships.

xix



CHAPTER 1

INTRODUCTION

Tuberculosis (TB) is one of the most fatal infectious diseases worldwide [1]. It is

acquired through airborne infection and transmission. Among all TB infections,

90% of the cases remain latent, while in only 10% of the cases the patient is infected

with active TB [2]. Most active TB cases involve infection in the lungs, which are

referred as pulmonary TB cases. Tuberculosis infections on other sites of the body

cause extrapulmonary TB [3]. Mycobacterium tuberculosis complex (MTBC) is the

bacteria which causes TB. DNA fingerprinting methods are used to discriminate and

identify genetically related MTBC strains. Genetic diversity of MTBC strains leads

to different levels of pathogenicity, transmissivity, virulence and drug resistance.

The genetic variation of MTBC also follows a pattern on geographic distribution of

their hosts and their attributes [4]. Therefore, it is highly desirable to define the

borders of genetic variability of MTBC strains, explain mutation mechanism of their

genetic markers, and make inferences on host populations.

1.1 Tuberculosis

Tuberculosis is an infectious disease transmitted by its pathogen MTBC. In

this section, we describe the symptoms and treatment options of TB, and statistics

based on long-term outcomes of TB. Then, we describe the MTBC genome and

present the biomarkers used for MTBC genotyping.

1.1.1 The disease

Tuberculosis is a bacterial disease affecting the lungs in most TB cases, leading

to pulmonary TB. The symptoms include prolonged bad cough, chest pain, coughing

up blood, fever, weight loss, fatigue and night sweat. According to the World Health

Organization (WHO), one third of the human population is infected with latent or

* Portions of this chapter previously appeared as: C. Ozcaglar, A. Shabbeer, S. L. Vanden-
berg, B. Yener, and K. P. Bennett, Epidemiological models of Mycobacterium tuberculosis complex
infections, Math. Biosciences, vol. 236, no. 2, pp. 77-96, 2012.
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Figure 1.1: Number of cases and case rates per 100,000 individuals in the
US between 1980-2009 shows a general downward trend with
the exception of a sudden rise in 1990s. The plot is generated
using the data from [5].

active TB [1]. Tuberculosis can be treated by anti-tuberculosis drugs which require

taking pills for 6-9 months. TB infection can also be prevented by Bacillus Calmette

Guérin (BCG) vaccine before infection.

Tuberculosis case counts and case rates have changed in the US and worldwide

over the years. Figure 1.1 shows the number of TB cases and case rates in the US

from 1980 to 2009. The number of cases and case rates both follow a decreasing

trend, with the exception of increasing TB cases and case rates in the early 1990s.

The increase in this period was attributed to several factors: the HIV epidemic in

the early 1990s leading to HIV/TB co-infection, the emergence of drug resistant TB,

immigration to the US from developing countries, and increased mass transporta-

tion [6–8]. Although the numbers look optimistic, detection and treatment rates of



3

tuberculosis in developing countries are lower, which causes more than two million

people to die from TB every year.

Tuberculosis has long latency periods and progresses slowly inside the individ-

ual’s body. At the population level, this slow progression results in tuberculosis epi-

demics that span long time intervals. Therefore, epidemiological models are needed

to estimate the long-term effects of TB epidemics [9]. One such TB epidemic took

place in Europe at the beginning of 17th century, and continued for the next 200

years, which is also known as the White Plague.

1.1.2 The pathogen

Mycobacterium tuberculosis complex (MTBC) is the airborne pathogen of tu-

berculosis. The MTBC is comprised of the species M. tuberculosis, M. africanum,

M. bovis, M. canettii, M. microti, and M. pinnipedii. The ideal approach to ac-

cess genetic variation among MTBC strains is to sequence and compare their whole

genomes [10]. Cole et al. sequenced the complete genome of M. tuberculosis H37Rv

strain which possesses 4,411,529-bp and made a huge impact in TB research in

1998 [11]. Soon after, in 2003, Garnier et al. presented the 4,345,492-bp genome

sequence of M. bovis AF21222/97, and compared it to the complete genome se-

quence of M. tuberculosis H37Rv [12]. However, whole genome sequencing is time-

consuming, labor-intensive, and slow for TB control and prevention. Therefore,

only the genomic loci with enough dissimilarity among strains are used to genotype

MTBC. DNA fingerprinting of MTBC strains reveals differences among MTBC iso-

lates which are genotyped by multiple biomarkers. These biomarkers are spacer

oligonucleotide types (spoligotypes), Mycobacterial Interspersed Repetitive Units

- Variable Number Tandem Repeats (MIRU-VNTR), IS6110 restriction fragment

length polymorphisms (RFLP), long sequence polymorphisms (LSPs), and single

nucleotide polymorphisms (SNPs) [13, 14]. MTBC strains can be genotyped with

these biomarkers in order to detect or rule out outbreaks, identify and distinguish

MTBC strains into distinct lineages, and track transmission routes of TB.

The most commonly used MTBC genotyping methods are spoligotyping, MIRU

typing and RFLP analysis [10,16]. Spoligotyping is based on the polymorphisms in
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Figure 1.2: MTBC genome. Spoligotyping is based on the polymor-
phisms in the DR locus. MIRU typing is based on the poly-
morphisms in MIRU loci. RFLP analysis is based on the
copy number of IS6110 insertion sequences. The figure was
taken from a study by Barnes et al. [15].

the direct repeat (DR) region, which consists of direct repeats separated by spacer

sequences [17]. The method uses 43 spacers, which is represented as a 43-bit binary

sequence, where zeros and ones represent absence and presence of spacers respec-

tively. MIRU-VNTR analysis is based on the polymorphisms in 41 mini-satellite

region dispersed within the intergenic regions of MTBC [18]. Out of 41 MIRU loci,

12, 15, and 24 loci MIRU pattern analysis formats are used. MIRU patterns are

represented as n-bit digit sequence, where n is the number of loci used in the MIRU

analysis. RFLP analysis is the gold standard for MTBC genotyping. Strains are

typed based on the copy number and the variability in the positions of IS6110 in-



5

sertion sequences [14]. RFLP analysis has higher discriminatory power compared

to spoligotyping and MIRU-VNTR typing. Figure 1.2 from a study by Barnes et

al. shows the physical distribution of DR locus, MIRU loci, and IS6110 insertion

sequences on MTBC genome [15].

1.2 Motivation

Availability of multiple biomarkers of MTBC strains and patient attributes

enhances the efforts for TB control and prevention. Classification of MTBC strains

using multiple biomarkers leads to new lineages. Similarly, mutation mechanism

of one biomarker can be more accurately described via an additional independent

biomarker. Finally, genetically similar MTBC strains can infect phenotypically sim-

ilar host subpopulations with high association and possible adaptation. In this sec-

tion, we briefly detail the motivation behind the use of data from multiple sources

in these three problems.

Groups of genetically close MTBC strains are interchangeably called sub/fami-

lies, sub/clades and sub/lineages [19–26]. Throughout this thesis, we will refer to

them as lineages and sublineages. In earlier TB databases such as SpolDB3 and

SpolDB4, only one biomarker of MTBC was used to define genetic lineages and

sublineages [19, 27]. However, it is advantageous to use multiple biomarkers and

increase discriminatory power of biomarkers for strain classification [28]. Recently

developed models such as Conformal Bayesian Network (CBN) and Knowledge-

based Bayesian Network (KBBN) made use of multiple biomarkers for classification

of MTBC strains into lineages and sublineages respectively [20–22]. Similarly, mul-

tiple biomarkers can be used to enrich or correct strain differentiation and classifi-

cation via genomic data fusion. Therefore, with the advent of MTBC genotyping,

new data fusion methods are needed to combine multiple biomarker data in one

framework.

Evolutionary analysis of MTBC depends on mutation mechanism of each in-

dividual biomarker. Since DR locus, MIRU loci and IS6110 insertion sequences are

distributed randomly on MTBC genome, it is assumed that they evolve indepen-

dently, with some rare exceptions on the dependence of IS6110 transposition and
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DR evolution [29]. To refine evolutionary history of a biomarker on MTBC genome,

it is beneficial to use an independent biomarker and incorporate mutation mecha-

nisms of multiple biomarkers in one evolutionary scenario. For instance, Fenner et

al. revisited DR evolution and found evidence of rare convergent evolution in the DR

region using SNPs, 24-loci MIRU-VNTR and genomic deletions [30]. This suggests

that use of multiple biomarkers in one evolutionary scenario can expose unknown or

unforeseen mutation mechanism of biomarkers, which is hard to observe by examin-

ing the evolution of one biomarker at a time. Therefore, using mutation mechanism

of multiple biomarkers in one evolutionary scenario via phylogenetic analysis can

lead to new insights about the evolution of individual biomarkers.

Stable and variable host-pathogen associations between MTBC strains and TB

patients have been observed in earlier studies [4, 31]. This suggests that joint mod-

eling of MTBC genotype and patient phenotype data can identify new lineages and

sublineages, most of which are named according to their dominance in particular

geographical regions, leading to phylogeographic lineage names. In addition, genetic

proximity between MTBC strains can be incorporated into association analysis to

enforce most likely mutation events to occur. Similarly, spatial proximity between

TB patients can be incorporated into analysis to favor most likely transmission

events. Therefore, genome-phenome data fusion methods incorporating relations

among MTBC strain genome and relations among TB patient phenome can en-

hance host-pathogen association analysis of tuberculosis patients. In this thesis, we

propose algorithmic data fusion methods for these three problems.

1.3 Our contributions

In this thesis, we propose new algorithmic data fusion methods for MTBC

strains and TB patients. Our contributions are threefold. First, we subdivide major

lineages of MTBC into sublineages based on two biomarkers using the Tensor Clus-

tering Framework (TCF) on Multiple-biomarker tensors (MBT). Second, we present

a new evolution model for spoligotypes based on two biomarkers, and analyze topo-

logical attributes of the biological network reflecting the mutation history. Third,

we propose the Unified Biclustering Framework (UBF), and find biclusters which



7

map to existing host-pathogen associations as well as new ones. A summary of our

contributions is as follows:

• Sublineage structure of MTBC: We propose the Tensor Clustering Frame-

work (TCF) on Multiple-biomarker tensors (MBT) and subdivide major lin-

eages of MTBC into sublineages via genomic data fusion [23–25]. The multiple-

biomarker tensor holds information about two biomarkers for each MTBC

strain. We then apply multiway models on the multiple-biomarker tensor and

decompose it into component matrices. Based on the component matrix of

the strain mode, we cluster MTBC strains into groups of genetically similar

MTBC strains. We compare these tensor sublineages to an existing sublin-

eage definition based only on spoligotypes. We confirm some of the existing

sublineages and suggest subdivision or merging of other sublineages.

• Mutation of spoligotypes: We propose a mutation model of spoligotypes

based on both spoligotypes and MIRU patterns of MTBC strains [32,33]. The

model is based on a maximum parsimony method using three genetic distance

measures defined on these two biomarkers. The resulting putative mutation

history of spoligotypes depicted via a spoliogoforest reveals a power-law distri-

bution on the number of descendant spoligotypes, and spatially bimodal distri-

bution of number of mutations at each spacer in the DR region. Based on this

distribution, we built two alternative models for mutation length frequency:

Starting Point Model (SPM) and Longest Block Model (LBM). Both models

accurately describe the mutation length frequency distribution of spoligotypes.

• Host-pathogen association: We propose the Unified Biclustering Frame-

work (UBF) for host-pathogen association analysis via genome-phenome data

fusion [34]. UBF is flexible in the sense that genetic proximity between MTBC

strains, spatial proximity between TB patients, and time can be incorporated

into association analysis. This refines our search by favoring most likely mu-

tation and transmission events. The biclustering results show high correlation

between spoligotypes of MTBC strains and their hosts from particular coun-

tries. These biclusters point to some of the existing patient-strain relation-
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ships, and reveal new associations.

1.4 Organization

The organization of this thesis is as follows: In Chapter 2, we give an overview

of post-genomic data analysis. In Chapter 3, we present the sublineage structure

of MTBC using the Tensor Clustering Framework on multiple-biomarker tensors.

In Chapter 4, we present the mutation model of spoligotypes based on multiple

biomarkers of MTBC. In Chapter 5, we present the Unified Biclustering Framework

and propose existing and new host-pathogen associations. In Chapter 6, we end

with conclusions and future directions for our research.



CHAPTER 2

BACKGROUND: POST-GENOMIC DATA ANALYSIS

Following the completion of Human Genome Project with the release of the hu-

man genome in 2001, pre-genomic era ended and yielded to post-genomic era [35].

With the advent of automated fast gene sequencing techniques, available genomic

data is growing faster than ever. New methods are built to extract knowledge

from raw genomic data for interpretation of genome from biological or evolutionary

perspectives [36]. Many more hypotheses, including gene-gene interactions, gene-

environment interactions, uneven contributions of multiple genes to a disease, and

genome-phenome relationships remain unexamined and require more complex meth-

ods. In this section, we briefly review data mining and machine learning methods

for the analysis of exponentially-growing post-genomic data. These methods include

classification, clustering, biclustering, multiway modeling, and phylogenetic analysis

of genomic data.

2.1 Classification and Clustering

Classification and clustering are commonly used for genomic data. Classifi-

cation assigns labels to data points via a model, and it is a supervised learning

method. Clustering methods on the other hand group data points into close and

compact subgroups based on the structure of the data, and it is an unsupervised

learning method. Next, we describe classification, clustering, and present tools for

both tasks on MTBC strains.

2.1.1 Classification

Classification is the task of finding a model that distinguishes data classes in

order to predict predefined classes of unlabeled data points [37]. The derived model

is learned based on a set of training data with labeled data points, and results in

a function f that maps each attribute set x to one of the predefined classes y [38].

Because the class of each data point in the training set is known, classification is a

9
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supervised learning task. Examples of biological data classification methods include

classification of yeast genes into functional categories using support vector machines

(SVM) and classification of hereditary breast cancer data via partial least squares

(PLS) [39,40].

2.1.2 Clustering

Clustering is the task of grouping a dataset into classes of similar data points

[37]. The goal is to maximize intra-cluster similarity and minimize inter-cluster

similarity. The classes of data points are unknown a priori, therefore clustering is

an unsupervised learning task. Various clustering methods applied to post-genomic

data include partition clustering algorithms such as k-means, hierarchical clustering,

density-based clustering, and spectral clustering [41]. Examples of gene clustering

include hierarchical clustering of yeast microarray data and human microarray data

which identified genes with known similar functions [42].

2.1.3 Classification and Clustering tools for MTBC strains

Various methods and tools are developed to classify or cluster MTBC strains.

A decision tree based method by Ferdinand et al. classified MTBC strains into

8 spoligotype-defined families and found that MIRU24 is an informative loci for

classification [43]. The conformal Bayesian network (CBN) by Aminian et al. clas-

sified MTBC strains into 6 major lineages using spoligotypes and MIRU patterns,

and confirmed that the classification accuracy is higher when both biomarkers are

used [20]. The rule-based TB-Lineage model by Shabbeer et al. classified MTBC

strains into 6 major lineages using spoligotypes and MIRU24 [26]. The knowledge-

based Bayesian network (KBBN) by Aminian et al. classified MTBC strains into 45

sublineages based on expert-defined rules for spoligotypes and MIRU patterns [21].

There also exist tools for clustering MTBC strains into groups of similar

strains. First came SPOTCLUST, an unsupervised probabilistic model based on

spoligotypes, which confirmed existing lineages and suggested new lineages [44].

Affinity propagation based on deletions distance between spoligotypes by Borile

et al. supported previously identified sublineages, identified new sublineages, and

re-assigned MTBC strains in ill-defined sublineages [45].
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2.2 Biclustering

Biclustering, also known as co-clustering, is a subset of clustering methods

which allow simultaneous clustering of rows and columns of a matrix [46]. The

concept was first introduced by Hartigan et al. in 1972 with the name direct clus-

tering [47]. Mirkin et al. used the term biclustering in 1996, referring to the same

method [46]. With the advances in gene sequencing technology and availability

of inexpensive microarray experiments, biclustering became popular in microarray

data analysis at the beginning of 21st century.

Biclustering simply refers to partitioning a matrix into coherent groups of

submatrices. Figure 2.1 shows a submatrix of the data matrix which associates

the corresponding rows and columns of the data, thereby forming a bicluster. The

biclusters can overlap, and the union of biclusters does not have to cover the original

matrix, as opposed to clustering. The definition of coherence in a submatrix depends

on the type of bicluster. Biclusters can belong to one of these five major classes:

biclusters with constant values, biclusters with constant values on rows, biclusters

with constant values on columns, biclusters with coherent values, and biclusters with

coherent evolutions [48]. Biclustering algorithms are designed to find one or more

types of biclusters under investigation. Next, we present an overview of existing

biclustering algorithms.

2.2.1 Algorithms

Various biclustering algorithms have been proposed using different heuristic

approaches such as iterative row and column clustering combination, divide and

conquer, greedy iterative search, exhaustive bicluster enumeration, and distribution

parameter identification [48]. Direct clustering by Hartigan et al. treats a data

matrix as one block, and uses a top-down divide and conquer row and column clus-

tering [47]. At each iteration, the algorithm finds the row and column with highest

within-block variance, and iterates until a predefined number of biclusters are found.

Cheng and Church proposed several row/column removal/addition algorithms via a

greedy heuristic to find δ-biclusters with highest mean squared residue [49]. Flexible

Overlapped Biclustering (FLOC) algorithm by Yang et al. builds on the algorithms
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Figure 2.1: A bicluster refers to a submatrix within the data matrix. In
the figure, the blue submatrix represents a bicluster which
associates the corresponding rows and columns.

of Cheng and Church, and refines biclustering results after allowing biclusters to

overlap [50]. Similarly, the Plaid model by Lazzeroni et al. finds a possibly overlap-

ping bicluster at each iteration by minimizing a merit function [51].

Coupled Two-Way Clustering (CTWC) algorithm by Getz et al. finds a bi-

clustering by iteratively applying one-way clustering algorithm to rows and columns

of a matrix alternately [52]. Interrelated Two-Way Clustering (ITWC) algorithm

by Tang et al. iteratively clusters rows and columns, combines clustering results of

both dimensions, finds heterogeneous groups and finally reduces genes [53]. Spectral

bipartitioning algorithm by Dhillon et al. uses the second left and right singular

vectors of scaled data matrix to find biclusters [54]. Kluger et al. proposed a sim-

ilar spectral biclustering algorithm which allows different numbers of clusters in

both dimensions [55]. Sheng et al. proposed another biclustering method based on

modeling rows and columns using independent multinomial distributions and esti-

mating their parameters via Gibbs sampling [56]. The Order-Preserving Submatrix

(OPSM) algorithm by Ben-Dor et al. finds submatrices such that there exists a

permutation of columns under which the values in each row are strictly increas-

ing [57]. Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) by Tanay

et al. uses exhaustive enumeration of biclusters and defines the ones corresponding
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to subgraphs with maximum weight as statistically significant biclusters [58]. Mu-

rali et al. proposed the xMOTIF algorithm which finds conserved gene expression

motifs with maximum number of conserved genes [59]. Binary Inclusion-Maximal

(BiMax) biclustering algorithm by Prelic et al. finds the maximal biclusters on a bi-

nary data matrix by searching for submatrices of all ones [60]. Density-constrained

biclustering algorithm by Dao et al. finds biclusters such that the corresponding

bipartite graph and at least one of its one-vertex-induced subgraphs have density

above a threshold [61]. Next, we move on to applications of biclustering algorithms

on genomic data.

2.2.2 Applications to genomic data

Biclustering methods have been widely used after the advances in gene se-

quencing and microarray technologies. Gene expression in microarray data links

genotype and phenotype of genes or cells, which is critical to understanding biolog-

ical processes such as gene regulation, gene function, gene evolution and the role

of genes in diseases [62]. Therefore, biclustering applications on gene expression

data are used to associate genes with specific conditions according to their expres-

sion level. Analysis of gene expression datasets yielded results in gene functional

annotation, gene coregulation identification, and sample classification.

Most of the gene expression datasets used in biclustering applications belong

to yeast or human cells. Tanay et al. used SAMBA algorithm on yeast transcrip-

tional network and functional network [58, 63]. They identified the global orga-

nization of yeast system using associations of different modules to the functional

network, and assigned functional annotation to uncharacterized yeast genes. Getz

et al. used CTWC algorithm to analyze Leukemia samples [52]. They found a

connection between T-cell-related genes and the subclassification of the acute lym-

phoblastic leukemia (ALL) samples into T cell and B cell ALL. They also found a

stable partition of acute myeloid leukemia (AML) patients into groups of treated

and untreated patients using a bicluster of cell-growth-related genes. Dao et al.

used density-constrained biclustering algorithm on colon cancer and breast cancer

data, and identified two dysregulated genes involved in TP53 signaling: GSE8671 for
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colon cancer, GSE3494 for breast cancer [61]. Colak et al. used densely connected

biclustering (DECOB) algorithm on PPI/GI network of yeast and human gene ex-

pression data [64]. They showed that GO-term specific clusters of modules predict

functional relationships more accurately. In all of these applications of biclustering

algorithms, some biclusters have clear biological interpretation, and other biclusters

are potential associations to be analyzed leading to directions in future research.

2.3 Multiway modeling

Multiway modeling is the extension of two-way data modeling to higher-order

datasets [65, 66]. Multiway arrays, also referred as tensors, are higher-order gener-

alizations of vectors and matrices. Tensors have a standardized terminology which

is different than that of arrays of order 1 and 2 [67]. In the next section, we briefly

review the preliminary concepts and notations of multiway modeling, present mul-

tiway models, algorithms for fitting multiway models, and applications of multiway

modeling to genomic data.

2.3.1 Preliminaries and notation

Tensors are multiway arrays denoted as X ∈ RI1×I2×...×IN , where the order of X

is N > 2. Each entry of X ∈ RI1×I2×...×IN is represented by xi1i2...iN . Each dimension

of a tensor is called a mode. For example, the tensor X ∈ RI1×I2×...×IN has N modes.

Fixing all but two indices of a tensor returns two-dimensional sections of the tensor,

also called a slice. For the special case of three-dimensional tensor X ∈ RI1×I2×I3 ,

fixing the index in the first, second and third mode returns a horizontal slice, a

lateral slice, and a frontal slice respectively. Fixing all but one index of a tensor

returns vectors of the tensor, also called a fiber. For the 3-way tensor X ∈ RI1×I2×I3 ,

releasing the first, second, and third mode returns a vertical fiber or column, a

horizontal fiber or row, and a depth fiber or tube respectively [67].

2.3.1.1 Vector and matrix products

Several vector and matrix products are frequently used in multiway analysis.

An N -way rank-one tensor X ∈ RI1×I2×...×IN can be written as the outer product of
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N vectors a1 ∈ RI1 , a2 ∈ RI2 , . . . , aN ∈ RIN as in Equation (2.1):

X = a1 ◦ a2 ◦ . . . ◦ aN (2.1)

such that

xi1i2...iN = a1i1 a2i2 . . . aNiN

where the symbol ◦ represents vector outer product.

Kronecker product of two matrices A ∈ RM×N and B ∈ RP×Q is denoted as

A⊗B ∈ RMP×NQ, and it is defined as in Equation (2.2).

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 (2.2)

Khatri-Rao product is equivalent to column-wise Kronecker product. Khatri-

Rao product of two matrices A ∈ RI×K and B ∈ RJ×K is denoted as A�B ∈ RIJ×K ,

and it is defined using Kronecker product of their columns as in Equation (2.3).

A�B = [a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK ] (2.3)

Hadamard product is the element-wise matrix product. The Hadamard prod-

uct of two matrices A ∈ RI×J and B ∈ RI×J of the same size is denoted as in

Equation (2.4).

A ∗B =


a11b11 · · · a1Jb1J

...
. . .

...

aI1bI1 · · · aIJbIJ

 (2.4)

2.3.1.2 Tensor products

Notation for tensor multiplication in multilinear algebra is different from ma-

trix multiplication in linear algebra. The n-mode vector product of a tensor X ∈
RI1×I2×...×IN with a vector v ∈ RIn is denoted by X ×n v ∈ RI1×...×In−1×In+1×...×IN .

Each element of X×n v is calculated as follows:
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Figure 2.2: Matricization of 3-way tensor X ∈ RI×J×K in the first mode.
The resulting matrix is X(1) ∈ RI×JK.

(X×n v)i1×...×in−1×in+1×...×iN =
In∑
in=1

xi1×i2×...×iNvin . (2.5)

The n-mode matrix product of a tensor X ∈ RI1×I2×...×IN with a matrix A ∈
RJ×In is denoted by is denoted by X×nA ∈ RI1×...×In−1×J×In+1×...×IN . Each element

of X×n A is calculated as follows:

(X×n A)i1×...in−1×j×in+1×...×iN =
In∑
in=1

xi1×i2×...×iNajin . (2.6)

2.3.1.3 Matricization

Tensors can be transformed into a matrix via a process called matricization,

also known as unfolding. The mode-n matricization of tensor X ∈ RI1×I2×...×IN re-

arranges mode-n slices of the tensor as the columns of the resulting matrix, which

is denoted as X(n). Figure 2.2 shows the matricization of 3-way tensor X ∈ RI×J×K

in the first mode. The resulting matrix is denoted as X(1).

2.3.2 Multiway models

Multiway models are developed for decomposition of tensors into factor ma-

trices. The two most commonly used tensor decomposition models are PARAFAC

and Tucker3. In this section, we give a brief background on these multiway models.

2.3.2.1 PARAFAC

PARAFAC model is an extension of singular value decomposition to multilin-

ear decomposition [65]. The model is simultaneously found by Carroll and Chang
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in the form of canonical decomposition (CANDECOMP), and by Harshman in the

form of parallel factors (PARAFAC) [68, 69]. Therefore, the model is called CAN-

DECOMP/PARAFAC decomposition, abbreviated as CP. In this study, we refer to

this model as the PARAFAC model. The PARAFAC model can be represented as a

linear combination of rank-1 tensors. An R-component PARAFAC model on 3-way

tensor X ∈ RI×J×K is formulated as in Equation (2.7):

X ≈
R∑
r=1

ar ◦ br ◦ cr = JA, B, CK (2.7)

where ar ∈ RI , br ∈ RJ and cr ∈ RK are columns of factor matrices A ∈ RI×R,

B ∈ RJ×R and C ∈ RK×R respectively. JA, B, CK is the short-hand notation for

the decomposition using Kruskal operator [70]. This model can also be represented

in matrix notation using unfolded tensor as in Equation (2.8):

X(1) = A (C�B)′ + E(1) (2.8)

where E ∈ RI×J×K is the residual of the tensor decomposition. In the PARAFAC

model, the number of components in each mode is the same, and the model is

unique.

2.3.2.2 Tucker3

Tucker3 model is an extension of singular value decomposition to multilinear

decomposition without the equality constraint on the number of components at

each mode. The model is proposed by Tucker in 1963 and in his refined article in

1966 [71, 72]. Among the Tucker-family multiway models, the 3 in Tucker3 model

indicates that the model returns the components of all modes, in particular, it

returns components for all 3 modes of a 3-way array [73]. A (P ,Q,R)-component

Tucker3 model of 3-way array X ∈ RI×J×K is formulated as in Equation (2.9):

X ≈
P∑
p=1

Q∑
q=1

R∑
r=1

gpqr ap ◦ bq ◦ cr = JG; A, B, CK (2.9)

where ap ∈ RI , bq ∈ RJ and cr ∈ RK are columns of column-wise orthogonal
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factor matrices A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R respectively. The tensor

G ∈ RP×Q×R is the core tensor and its entries show the level of interaction be-

tween different components [74]. JG; A, B, CK is the short-hand notation for the

Tucker3 decomposition using the Tucker operator [75]. Tucker3 model can also be

represented in matrix notation using unfolded tensor as in Equation (2.10):

X(1) = AG(1) (C⊗B)′ + E(1) (2.10)

where E ∈ RI×J×K is the residual term. PARAFAC model is a special case of the

Tucker3 model in which the core tensor is a cubical superdiagonal tensor such that

G ∈ RR×R×R with grrr 6= 0 [76]. Tucker3 model is more flexible than PARAFAC in

that it allows different number of components at each mode, which in turn comes

with a cost: Tucker3 decomposition of a tensor is not unique due to rotational

freedom.

2.3.3 Algorithms

Given fixed number of components, there exist many algorithms for fitting

multiway models to tensors. The most commonly used algorithms for tensor de-

composition are based on alternating least squares (ALS) method. In this section,

we present PARAFAC-ALS and Tucker3-ALS algorithms. We also briefly mention

other algorithms for fitting multiway models.

2.3.3.1 PARAFAC-ALS

Based on the PARAFAC model formulation in Equation (2.8), the objective

function is as follows:

L1 = ||X(1) −A (C�B)′ ||2F . (2.11)

To minimize L1 in an alternating fashion, we minimize for one of the factor

matrices A, B, C while fixing others. Algorithm 1 describes the PARAFAC-ALS proce-

dure for fitting an R-component PARAFAC model to X ∈ RI×J×K . PARAFAC-ALS

can be initialized using a rational start such as generalized rank annihilation method

(GRAM), a semi-rational start such as higher-order SVD, or a random start [77].
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A recommended approach is to use both rational and semi-rational starting points

as well as several random starting points in order to detect local minima if one

exists. Convergence criterion of PARAFAC-ALS can be a combination of limiting

the number of iterations and insufficient change in loss value, among many others.

Other algorithms for fitting a PARAFAC model include alternating algorithms such

as alternating slice-wise diagonalization and self-weighted alternating trilinear de-

composition, derivative-based algorithms such as positive matrix factorization for

3-way arrays, damped Gauss Newton and CP-OPT, direct non-iterative algorithms

such as GRAM and direct trilinear decomposition [78,79].

Algorithm 1 PARAFAC-ALS(X ∈ RI×J×K ,R)

1: Initialize A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R

2: while (convergence criterion) do
3: Z = C�B

A = X(1)Z(Z′Z)−1

4: Z = C�A
B = X(2)Z(Z′Z)−1

5: Z = B�A
C = X(3)Z(Z′Z)−1

6: end while

2.3.3.2 Tucker3-ALS

Based on Tucker3 model formulation in Equation (2.10), the objective function

of the model is:

L2 = ||X(1) −AG(1) (C⊗B)′ ||2F (2.12)

such that factor matrices A, B, C are column-wise orthogonal. In order to minimize

L2 in ALS form, we minimize for one of the factor matrices at a time and fix others.

Algorithm 2 describes Tucker3-ALS procedure for fitting a (P ,Q,R)-component

Tucker3 model to X ∈ RI×J×K . Initialization methods and convergence criterion

for PARAFAC-ALS described earlier can also be used for Tucker3-ALS. In Tucker3-

ALS algorithm, SV D(Z,P ) denotes the first P left singular vectors of Z. N-mode

generalization of this algorithm is also referred as Higher-Order Orthogonal Iteration
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(HOOI) [80]. Other algorithms for fitting a Tucker3 model include slice projection

by Wang et al. [81] and multislice projection by Turney et al. [82].

Algorithm 2 Tucker3-ALS(X ∈ RI×J×K ,[P ,Q,R])

1: Initialize A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R

2: while (convergence criterion) do
3: Z = X(1) (C⊗B)

A = SV D(Z,P )
4: Z = X(2) (C⊗A)

B = SV D(Z,Q)
5: Z = X(3) (B⊗A)

C = SV D(Z,R)
6: end while
7: G(1) = A′X(1) (C⊗B)

2.3.4 Applications of multiway modeling to genomic data

Multiway models and their extensions have been recently used in bioinformat-

ics and genomics [83]. Acar et al. identified epileptic seizures using PARAFAC

model on Epilepsy tensor of the form time samples × scales × electrodes [84].

Higher-order singular value decomposition (HOSVD) is used by Omberg et al. on

the tensor of the form gene × time × condition for mRNA expression data and

found conserved genes and a genome-scale correlation between DNA replication ini-

tiation and RNA transcription [85]. Muralidhara et al. applied the same method

on organisms × nucleotides × positions tensor from rRNA sequence dataset, and

found simultaneous convergent and divergent evolution in rRNA [86]. Yener et al.

used PARAFAC and Tucker3 models on the tensor of the form gene locus link ×
gene ontology category × osteogenic stimulant from human mesenchymal stem cell

dataset and revealed that stem cells expressed two distinct, stimulus-dependent sets

of functionally related genes [87]. Multiway modeling is also used in other areas

such as chemometrics, psychometrics, computer vision, signal processing and social

network analysis.
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Figure 2.3: The spoligoforest of the patient dataset from NYS-DOH.
Each node in the spoligoforest represents a spoligotype, and
each edge represents a putative mutation event from ancestor
spoligotype to its descendants. Each node is colored by the
major lineage of MTBC strains with the associated spoligo-
type. There are 254 nodes and 185 edges in the spoligoforest.

2.4 Phylogenetic analysis

Phylogenetics is the study of evolution among a set of organisms, also called

taxa. The inferred evolutionary history of taxa can be represented as a graphi-

cal structure called a phylogenetic tree [88]. In phylogenetic trees, each leaf node

represent a taxon and each internal branch point represents a speciation event.

To construct evolutionary relationships between spoligotypes of MTBC, a different

graphical structure, called spoligoforest, is used [89]. Figure 2.3 shows the spoligo-

forest of a dataset from New York State Department of Health (NYS-DOH) with

254 nodes and 185 edges. Each node in the spoligoforest, internal or leaf node,

represents a spoligotype, and each branch represents a mutation event from the

ancestor spoligotype to its descendants. Spoligoforests are phylogenetic trees for

spoligotypes, while being structurally different.
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Various methods are used to infer phylogenies and to build the corresponding

phylogenetic trees. These methods are distance methods, parsimony methods, like-

lihood methods and Bayesian methods. Next, we briefly review these phylogenetic

tree generation methods.

2.4.1 Distance methods

Pairwise distances can be used to build phylogenetic trees. Examples of dis-

tance methods include least-squares method, unweighted pair-group method us-

ing arithmetic averages (UPGMA) [90], neighbour-joining method [91], and Fitch-

Margoliash method [92]. Distance methods are fast and consistent, they produce a

single phylogenetic tree. On the other hand, if evolutionary rates vary from taxon

to taxon, distance methods are unable to propagate this change [93].

2.4.2 Parsimony methods

Parsimony methods are used to infer phylogenies based on the principle of min-

imum net amount of evolution [94]. The phylogenetic tree based on maximum parsi-

mony methods are called the most parsimonious tree. Examples of parsimony meth-

ods include Camin-Sokal parsimony, Dollo parsimony, polymorphism parsimony and

Wagner parsimony [93]. It is also possible to weight mutations in parsimony and use

weighted parsimony methods. Parsimony methods can also be extended to distance-

based methods such as neighbour-joining (NJ) algorithm if there are multiple states

of taxa, in which case the distances matter [91].

2.4.3 Likelihood methods

Given a model of evolution, maximum likelihood methods estimate the likeli-

hood of all possible tree topologies which can generate the observed phylogeny [95].

The tree topology with maximum likelihood is assigned as the accurate phylogenetic

tree. Likelihood methods are consistent and they can make corrections to phylogeny

when evolutionary rates vary. On the other hand, they are computationally expen-

sive.
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2.4.4 Bayesian methods

Bayesian methods are similar to likelihood methods, with additional prior

probability of tree topology [96]. Most commonly used Bayesian method for phy-

logeny is MCMC method Metropolis Hastings algorithm. The phylogenies produced

by Bayesian methods are highly accurate, but calculating the posterior probability

of a tree is time consuming.



CHAPTER 3

SUBLINEAGE STRUCTURE ANALYSIS OF

MYCOBACTERIUM TUBERCULOSIS COMPLEX

STRAINS USING MULTIPLE-BIOMARKER TENSORS

3.1 Introduction and Background

Tuberculosis (TB), a bacterial disease caused by Mycobacterium tuberculosis

complex (MTBC), is a leading cause of death worldwide. In the United States,

isolates from all TB patients are routinely genotyped by multiple biomarkers. The

biomarkers include Spacer Oligonucleotide Types (spoligotypes), Mycobacterial In-

terspersed Repetitive Units - Variable Number Tandem Repeats (MIRU-VNTR),

IS6110 Restriction Fragment Length Polymorphisms (RFLP), Long Sequence Poly-

morphisms (LSPs), and Single Nucleotide Polymorphisms (SNPs).

Genotyping of MTBC is used to identify and distinguish MTBC into distinct

lineages and/or sublineages that are quite useful for TB tracking, TB control, and

examining host-pathogen relationships [4]. The six main major lineages of MTBC

are M. africanum, M. bovis, M. tuberculosis subgroup Indo-Oceanic, M. tuberculosis

subgroup Euro-American, M. tuberculosis subgroup East Asian (Beijing) and M.

tuberculosis subgroup East-African Indian (CAS). Other major lineages exist such

as M. canettii and M. microti, but they do not commonly occur in the US, so we do

not consider them here. These major lineages can be definitively characterized using

LSPs [97], but typically only spoligotypes and MIRU are collected for the purpose

* Portions of this chapter previously appeared as:
C. Ozcaglar, A. Shabbeer, S. Vandenberg, B. Yener, and K. P. Bennett, “Sublineage structure

analysis of Mycobacterium tuberculosis complex strains using multiple-biomarker tensors,” BMC
Genomics, vol. 12, no. Suppl 2, p. S1, 2011.

C. Ozcaglar, A. Shabbeer, S. Vandenberg, B. Yener, and K. P. Bennett, “Examining the sublin-
eage structure of Mycobacterium tuberculosis complex strains with multiple-biomarker tensors,” in
Proc. 2010 IEEE Int. Conf. Bioinformatics and Biomedicine (BIBM), Hong Kong, pp. 543-548,
2010.

C. Ozcaglar, A. Shabbeer, S. L. Vandenberg, B. Yener, and K. P. Bennett, “A clustering frame-
work for Mycobacterium tuberculosis complex strains using multiple-biomarker tensors,” Dept.
Comp. Sci., Rensselaer Polytechnic Inst., Troy, NY, Tech. Rep. 10-08, 2010.
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of TB surveillance. Classification, similarity search, and expert-rule based meth-

ods have been developed to correctly map isolates genotyped using MIRU and/or

spoligotypes to the major lineages [18,20,43].

While sublineages of MTBC are routinely used in the TB literature, their exact

definitions, names, and numbers have not been clearly established. The SpolDB4

database contains 39,295 strains and their spoligotypes with the vast majority of

them labeled and classified into 62 sublineages [27], but many of these are con-

sidered to be “potentially phylogeographically-specific MTBC genotype families”,

rather than distinct phylogenetic sublineages with known biomarkers. Therefore,

further analysis is needed to confirm these sublineages. The highly-curated MIRU-

VNTRplus website, which focuses primarily on MIRU, defines 22 sublineages. New

definitions of sublineages based on LSPs and SNPs are being discovered; e.g. the

RD724 polymorphism corresponds to the previously defined SpolDB4 T2 sublineage,

also known as the Uganda strain in MIRU-VNTRplus [98]. Now large databases

using spoligotype, MIRU patterns, and RFLP exist. The United States Centers

for Disease Control and Prevention (CDC) has gathered spoligotypes and MIRU

isolates for over 37,000 patients. Well-defined TB sublineages based on spoligotype

and MIRU are critical for both TB control and TB research.

The goal of this paper is to examine the sublineage structure of MTBC on the

basis of multiple biomarkers. The proposed method reveals structure not captured

in SpolDB4 spoligotype families because SpolDB4 sublineage only take into account

a single biomarker, spoligotypes. A spoligotype-only tool, SPOTCLUST, was used

to find MTBC sublineages using an unsupervised probabilistic model, reflecting

spoligotype evolution [44]. A key issue is to combine spoligotype and MIRU into a

single unsupervised learning model. When MIRU patterns are considered, SpolDB4

families that are well-supported by spoligotype signatures may become ambiguous,

or allow subdivision/merging of the families. Existing phylogenetic methods can be

readily applied to MIRU patterns, but specialized methods are needed to accurately

capture how spoligotypes evolve. It is not known how to best combine spoligotype

and MIRU patterns to infer a phylogeny. The online tool www.MIRUVNTRplus.org

determines lineages by using similarity search to a labeled database. The user

www.MIRUVNTRplus.org
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must select the distance measure which is defined using spoligotypes and/or MIRU

patterns, possibly yielding different results.

In this study, we develop a tensor clustering framework to find the sublineage

structure of MTBC strains labeled by major lineages based on multiple biomark-

ers. This is an unsupervised learning problem. We generate multiple-biomarker

tensors of MTBC strains for each major lineage and apply multiway models for

dimensionality reduction. The model accurately captures spoligotype evolutionary

dynamics using contiguous deletions of spacers. The tensor transforms spoligotypes

and MIRU into a new representation, where traditional clustering methods apply

without users having to decide a priori how to combine spoligotype and MIRU

patterns. Strains are clustered based on the transformed data without using any

information from SpolDB4 families. Clustering results lead to the subdivision of

major lineages of MTBC into groups with clear and distinguishable spoligotype

and MIRU signatures. Comparison of the tensor sublineages with SpolDB4 fami-

lies suggests dividing or merging some SpolDB4 families. As a way of validating

multiple-biomarker tensors, we use them in a supervised learning model to predict

major lineages using spoligotype deletions and MIRU. We compare the prediction

accuracy of the multiple-biomarker tensor model created with N-PLS (N-way partial

least squares) with the 2-way PLS applied to matrix data and an existing conformal

Bayesian Network approach.

In the next section, we give a brief background on clustering and multiway

analysis of post-genomic data, spoligotyping, and MIRU typing.

3.1.1 Clustering post-genomic data

Data clustering is a class of techniques for unsupervised classification of data

samples into groups of similar behavior, function, or trait [99]. Clustering can be

used in post-genomic data analysis to group strains with similar traits. It is common

practice to use different clustering methods and use a priori biological knowledge

to interpret the clusters, but computational cluster validation is needed to validate

results without prior knowledge for unsupervised classification. A great survey by

Handl et al. outlines the steps of computational cluster analysis on post-genomic



27

data [100]. An application of computational cluster validation on microarray data by

Giancarlo et al. compares the results of clusterings using various cluster validation

indices [101]. Eisen et al. clusters gene expression data which groups genes of similar

functions [42]. Improved clustering techniques have been developed, but how to

combine multiple sources of information in one clustering is an open question.

3.1.2 Application of multiway models to post-genomic data clustering

Clustering on post-genomic data can be accomplished based on multiple sources

of ground truth. The ground truth can be based on multiple biomarkers, host and

pathogen, or antigen and antibody. A survey by Kriegel et al. outlines the methods

for finding clusters in high-dimensional data [102]. Analysis of multiway arrays for

data mining is frequently used today in various fields, including bioinformatics, to

use multiple sources of prior information simultaneously [83]. Alter and Golub use

higher-order eigenvalue decomposition on a networks × genes × genes tensor and

find significant subnetworks associated with independent pathways in a genome-

scale network of relations among all genes of cellular systems [103]. Omberg et al.

use higher-order singular value decomposition on DNA microarray data, obtaining

the core tensor of eigenarrays × x-eigengenes × y-eigengenes and finding correlation

between genomes in the subtensors of the core tensor [85]. Multiway analysis of EEG

data identifies epileptic seizures [84]. Use of common partitive and hierarchical clus-

tering algorithms accompanied with multiway modeling of high-dimensional data

finds functionally related genes in stem cells [87]. Similarly, multiple biomarkers of

the MTBC genome can be used to cluster MTBC strains.

3.1.3 Spoligotyping

Spoligotyping is a DNA fingerprinting method that exploits the polymor-

phisms in the direct repeat (DR) region of the MTBC genome. The DR region

is a polymorphic locus in the genome of MTBC which consists of direct repeats (36

bp), separated by unique spacer sequences of 36 to 41 bp [17]. The method uses

43 spacers, thus a spoligotype is typically represented by a 43-bit binary sequence.

Zeros and ones in the sequence correspond to the absence and presence of spacers

respectively. Mutations in the DR region involve deletion of one or more contiguous
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spacers. To capture this mechanism of mutation in our model, we find informative

contiguous spacer deletions and represent spoligotype deletions as a binary vector,

where one indicates that a specific contiguous deletion occurs (i.e. a specified con-

tiguous set of spacers are all absent) and zero means at least one spacer is present

in that contiguous set of spacers.

Large datasets of MTBC strains genotyped by spoligotype have been amassed

such as SpolDB4 [27] and a more extended online version SITVIT (http://www.

pasteur-guadeloupe.fr:8081/SITVITDemo/index.jsp). Spoligotypes can be readily

used to identify commonly accepted major lineages of MTBC with high accuracy

[20]. SpolDB4 defined a set of phylogeographic sublineages or families based on

expert derived rules that are in common use in the TB community. In contrast to

the major lineages that have been validated by more definitive markers such as single

nucleotide polymorphisms and long sequence polymorphism, the exact definition of

MTBC sublineages and the accuracy of the SpolDB4 families created only using

spoligotypes remain open questions.

3.1.4 MIRU-VNTR typing

MIRU is a homologous 46-100 bp DNA sequence dispersed within intergenic

regions of MTBC, often as tandem repeats. MIRU-VNTR typing is based on the

number of tandem repeats of MIRUs at certain identified loci. Among these 41

identified mini-satellite regions on the MTBC genome, different subsets of sizes 12,

15, and 24 are proposed for the standardization of MIRU-VNTR typing [18]. In

this study, we use 12 MIRU loci for genotyping MTBC. Thus, the MIRU pattern is

represented as a vector of length 12, each entry representing the number of repeats

in each MIRU locus.

3.2 Methods

3.2.1 Datasets

The dataset comprises 6848 distinct MTBC strains as determined by spolig-

otype and 12-loci MIRU, labeled with major lineages and SpolDB4 families. The

strains are mainly from the CDC dataset - a database collected by the CDC from

http://www.pasteur-guadeloupe.fr:8081/SITVITDemo/index.jsp
http://www.pasteur-guadeloupe.fr:8081/SITVITDemo/index.jsp
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2004-2008 labeled with the major lineages collected by the TB-Insight project (http:

//tbinsight.cs.rpi.edu/) that was previously studied in [20]. We also used the MIRU-

VNTRplus dataset from www.MIRUVNTRplus.org which is labeled with SpolDB4

lineages and sublineages. The original SpolDB4 labeled dataset provided in an on-

line supplement [27] contains only spoligotypes. We found all occurrences of these

spoligotypes in the CDC and MIRU-VNTRplus dataset and constructed a database

with spoligotype and MIRU patterns, with major lineages as determined by CDC,

and sublineages as given in the SpolDB4 database [27]. The numbers of strains

for each major lineage in the resulting dataset are shown in Table 3.1. We created

6 datasets from the CDC+MIRU-VNTRplus dataset, one for each major lineage.

These same 6 major lineage datasets were merged into one for the supervised learn-

ing experiment.

3.2.2 TCF: Tensor Clustering Framework

Clustering MTBC strains based on multiple-biomarker tensors consists of a

sequence of steps. First, we find informative feature set of spoligotype deletions

and generate a tensor. Second, we apply multiway models on the tensor and get

a score matrix for the strain mode. Third, we use this score matrix to determine

the similarity between strains, and cluster them using a stable version of k-means.

In the final step, we evaluate the clustering results using cluster validity indices.

This stepwise Tensor Clustering Framework (TCF) is outlined in Figure 3.1. The

software for TCF is available at http://sourceforge.net/projects/tcff/. We describe

the steps of the tensor clustering framework in this section.

3.2.2.1 Feature Selection and Tensor Generation

Feature Selection The spoligotype pattern captures the variability in the DR

locus of the MTBC genome. A spoligotype consists of 43 spacers represented as

a 43-bit binary sequence, and according to the hidden parent assumption, one or

more contiguous spacers can be lost in a deletion event, but rarely gained [44,104].

Therefore, there are
43∑
i=1

i = 946 possible deletions of lengths varying from 1 to 43

in a spoligotype. Only subsets of spoligotype deletions are required for effective

http://tbinsight.cs.rpi.edu/
http://tbinsight.cs.rpi.edu/
www.MIRUVNTRplus.org
http://sourceforge.net/projects/tcff/
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Figure 3.1: Tensor clustering framework for MTBC strains. High-
dimensional genotype data is decomposed into two-
dimensional arrays using multiway models, which are then
used as input to the kmeans mtimes seeded algorithm. Clus-
terings are validated using best-match stability. In case of a
tie, the DD-weighted gap statistic is used to pick the number
of clusters.

Table 3.1: Numbers of strains in each major lineage of CDC+MIRU-
VNTRplus dataset and numbers of spoligotype deletions iden-
tified by the feature selection algorithm.

Major lineage # Strains # Spoligotype deletions

M. africanum 64 22
M. bovis 102 34

East Asian (Beijing) 571 5
East-African Indian(CAS) 508 18

Indo-Oceanic 1023 28
Euro-American 4580 109
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discrimination of MTBC strains. A set of 12 deletion sequences of spoligotypes

reported by Shabbeer et al. have proven to be good discriminator spacer deletions

for major lineage classification [26]. These 12 deletion sequences are used in the

supervised learning study. Another set of 81 deletion sequences of spoligotypes

reported by Brudey et al. have proven to be good discriminator spacer deletions for

SpolDB4 sublineage classification [27].

Within the TCF, we built a feature selection algorithm to find spacer deletions

that are informative. This insures that the results are not biased by a priori selection

of spoligotype deletions. Given a set of spoligotypes, we first calculate the frequency

fi, i = 1, .., 946, of each possible deletion among the spoligotypes of strains. If

fi = 1, the deletion is a common deletion. If 0 ≤ fi < threshold, the deletion is

a nonexistent deletion, where threshold is data dependent and threshold = 0.05 is

used by default. The deletions with frequency fi such that threshold ≤ fi < 1 are

uncommon deletions. In the second step, we iterate through the set of uncommon

deletions U , and remove an uncommon deletion u ∈ U , if there exists a common

deletion c ∈ C which is a substring of u. We assign the final set of uncommon

deletions as the feature set. Using the final feature set, we determine spoligotype

deletions that are effective in discriminating the strains of the dataset. Algorithm

3 summarizes the feature selection procedure. Numbers of spoligotype deletions for

each major lineage, found informative by the feature selection algorithm, are given

in Table 3.1.

Algorithm 3 FeatureSelection(Spoligotypes, th)

1: // Classify all possible spoligotype deletions according to their frequency fi
- 0 ≤ fi < th: Nonexistent deletions (N)
- th ≤ fi < 1: Uncommon Deletions (U)
- fi = 1: Common deletions (C)

where th is the upper bound of frequency for nonexistent deletions.
2: // Remove uncommon deletions which are a superset of a common deletion
3: for each uncommon deletion u ∈ U do
4: if ∃c ∈ C which is a substring of u then
5: Remove u from uncommon deletions: U = U \ {u}
6: end if
7: end for
8: Return uncommon deletion set U as the final feature set.
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Tensor Generation We generated multiple-biomarker tensors using two biomark-

ers, spoligotype deletions and MIRU patterns. The spoligotype deletions found in-

formative by the feature selection algorithm are used in the generation of multiple-

biomarker tensors. The strain dataset is arranged as a three-way array with strains

in the first mode, spoligotype deletions in the second mode, and MIRU patterns in

the third mode. Each entry X(i, j, k) in the tensor corresponds to the number of re-

peats in MIRU locus k of strain i with spoligotype deletion j. If spoligotype deletion

j does not exist in strain i, then the tensor entry X(i, j, .) is 0. Thus, strain datasets

are formed as Strains × Spoligotype deletions × MIRU patterns tensors, as shown

in Figure 3.2. Mathematically, each strain is represented as the outer product of the

binary spoligotype deletion vector and the MIRU pattern vector, which results in a

biomarker kernel matrix. Biomarker kernel matrices of the same size for each strain

form the multiple-biomarker tensor. Generation of the multiple-biomarker tensor

from biomarkers of each strain is shown in Figure 3.3. We represent spoligotype

deletions with a binary vector ~s, where si ∈ {0, 1}, i ∈ {1, ..,n}, and n is the num-

ber of informative spoligotype deletions found using the feature selection algorithm,

detailed in the methods section. We represent 12-loci MIRU with a digit vector ~m,

where mj ∈ {1, .., 9,> 9} and j ∈ {1, .., 12}. The entries of the multiple-biomarker

tensor which combines spoligotype and MIRU information can be formulated as:

Xijk = δij rik

where

δij =

0, if spoligotype deletion j does not occur in strain i,

1, if spoligotype deletion j occurs in strain i.

and rik is the number of repeats in MIRU locus k of strain i.
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Figure 3.2: Strains × Spoligotype deletions × MIRU patterns tensor.
Each entry X(i, j, k) of the tensor represents the number of
repeats in MIRU locus k of strain i with spoligotype deletion
j.

Figure 3.3: Biomarker kernel matrix ~s⊗ ~m for each strain forms multiple-
biomarker tensor. Vector ~s represents spoligotype deletions
and ~m represents MIRU patterns.

3.2.2.2 Multiway modeling

Multiway models are needed to fit a model to multiway arrays. We used

PARAFAC and Tucker3 techniques to model the tensors. We determined the num-

ber of components for each model to ensure a bound on the explained variance of

data.

Multiway models We used PARAFAC and Tucker3 models to explain the tensor

with high accuracy. Multiway modeling of tensors was carried out using the n-way

Toolbox of MATLAB by Bro et al. and the PLS toolbox [105,106].
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Figure 3.4: PARAFAC model of a three-way array with R components.
The tensor is modeled as a linear combination of rank-one
tensors for each mode.

PARAFAC PARAFAC is a generalization of singular value decomposition

to multiway data [69, 107]. A 3-way array X ∈ RI×J×K is modeled by an R-

component PARAFAC model as follows:

Xijk =
R∑
r=1

GrrrAirBjrCkr + Eijk

where A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R are component matrices of first, second,

and third mode. G ∈ RR×R×R is the core array, and E ∈ RI×J×K is the residual

term containing all unexplained variation. A description of the PARAFAC model is

shown in Figure 3.4.

The PARAFAC model is symmetric in all modes and the number of compo-

nents in each mode is the same [73]. The PARAFAC model is a simple model,

which comes with a restriction of the equality on the number of components in each

mode which makes it difficult to fit a data array with the PARAFAC model. One

advantage of the PARAFAC model is its uniqueness: fitting the PARAFAC model

with the same number of components to a given multiway dataset returns the same

result.

Tucker3 Tucker3 is an extension of bilinear factor analysis to multiway

datasets [72]. A 3-way array X ∈ RI×J×K is modeled by a (P ,Q,R)-component

Tucker3 model as follows:

Xijk =
P∑
p=1

Q∑
q=1

R∑
r=1

GpqrAipBjqCkr + Eijk
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Figure 3.5: Tucker3 model of a three-way array with (P ,Q,R) compo-
nents at each mode.

where A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R are the component matrices of first, second

and third modes respectively. G ∈ RP×Q×R is the core array and E ∈ RI×J×K is

the residual term. A description of the Tucker3 model is shown in Figure 3.5.

Tucker3 is a more flexible model compared to PARAFAC. This flexibility is

due to the core array G, which allows interaction of any factor in a mode with any

other factor in other modes [65]. Therefore, the number of components for each

mode can be different. This results in indeterminacy of the Tucker3 model, since it

cannot determine the component matrices uniquely.

Model validation A multiway model is appropriate if adding more components

to any mode does not improve the fit considerably. There is a tradeoff between

the complexity of the model and the variance of the data explained by the model.

Therefore, validation of a model also determines a suitable complexity for the model.

We used the core consistency diagnostic (CORCONDIA) to determine the number

of components of the PARAFAC model [108]. The core consistency diagnostic mea-

sures the similarity of the core array G of the model and the superdiagonal array

of ones. Core consistency is always less than or equal to 100% and may also be

negative. As a rule of thumb, Bro et al. suggests that a core consistency above

90% implies a trilinear model [108]. In our experiments, we kept core consistency

above 90%, while still explaining the variance of the data as much as possible with

a trilinear model. We determined the number of components of the Tucker3 model

by rank reduction on the unfolded tensor along each mode, and these components

explain over 90% of the variance of the data.
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3.2.2.3 Clustering algorithm

We developed the kmeans mtimes seeded algorithm, a modified version of the

k-means algorithm, to group MTBC strains based on the score matrices of the multi-

way models. K-means is a commonly used clustering algorithm with two weaknesses:

1) Initial centroids are chosen randomly, 2) The objective value of k-means, mea-

sured as within-cluster sum of squares, may converge to local minima, rather than

finding the global minimum. We solve these problems with two improvements: 1)

Initial centroids are chosen by careful seeding, using a heuristic called kmeans++,

suggested by Arthur et al. [109]. Let D(x) represent the shortest Euclidean distance

from data point x to the closest center already chosen. kmeans++ chooses a new cen-

troid at each step such that the new centroid is furthest from all chosen centroids.

Algorithm 4 summarizes the kmeans++ procedure. 2) The local minima problem is

partially solved by repeating the k-means algorithm multiple times and retrieving

the run with the minimum objective value. We repeated the algorithm m = 20

times. The kmeans mtimes seeded algorithm combines these two improvements, as

summarized in algorithm 5. The kmeans mtimes seeded algorithm is more stable

compared to the k-means algorithm, and produces more accurate clusters.

Algorithm 4 kmeans++(A,k)

1: Pick the first centroid c1 at random: InitCentroids = {c1}
2: for i = 2 to k do
3: Find D(a), distance to the closest centroid picked so far, for each data point

a ∈ A
4: Pick the data point a with maximum D(a) as new centroid

ci = arg max
a
D(a)

5: Add ci to the set of initial centroids:
InitCentroids = InitCentroids ∪ {ci}

6: end for
7: Run kmeans(A,k) with InitCentroids

3.2.2.4 Cluster validation

Clustering results for the MTBC strains are evaluated to determine the best

choice for the number of clusters and compare the chosen clustering with existing

sublineages using cluster validity indices. We used the best-match stability to pick
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Algorithm 5 kmeans mtimes seeded(A,k,m)

1: for i = 1 to m do
2: kmeans++(A,k)

3: Get the objective value of k-means run i
4: end for
5: Pick the k-means run with the minimum objective value

the most stable clusterings. In case of a tie in average best-match stability, we used

the DD-weighted gap statistic for cluster validation [110]. We compare our clusters

to an existing classification using the F-measure.

Best-Match Stability The stability of a clustering is measured by the distri-

bution of pairwise similarities between clusterings of subsamples of the data. The

idea behind stability is that if we repeatedly sample data points and apply the same

clustering algorithm to the subsample, then an effective clustering algorithm applied

to well separated data should produce clusterings that do not vary much for differ-

ent subsamples [111]. In such cases, the algorithm is stable independent of input

randomization. We use best-match stability as suggested by Hopcroft et al. [112] to

assess stability. The algorithm clusters the same data multiple times, and compares

the reference cluster to model clusterings. We used 25 model clusterings to com-

pare with the reference cluster. The stability of each cluster is calculated by finding

the average best match between this cluster and the clusters identified using other

model clusterings. High average best-match values denote that the two clusters have

many strains in common and are of roughly the same size [44]. We also calculate the

average best-match of a clustering by finding the average of best-match values for

all clusters in the reference clustering. Best-match stability of a cluster C, compared

to a model clustering Cref =
k⋃
i=1

refCi, is calculated as:

best match

(
C,

k⋃
i=1

refCi

)
= max

i=1,..,k
match(C, refCi)

where

match(C,C
′
) =

| C ∩ C ′ |
max (| C |, | C ′ |)
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and refCi is the set of items in reference cluster i.

DD-Weighted Gap Statistic (PC) Tibshirani et al. proposed a cluster validity

index called the gap statistic, which is based on the within-cluster sum of squares

(WCSS) of a clustering [113]. Let the dataset be X ∈ Rn×p consisting of n data

points with p dimensions. Let dij be the Euclidean distance between data points

i and j. After clustering this dataset, suppose that we have k clusters C1, .., Ck,

where Ci denotes the indices of data points in cluster i, of size ni =| Ci |. The sum

of within-cluster pairwise distances for cluster r is defined as:

Dr =
∑
i,j∈Cr

dij

and the within-cluster sum of squares for a clustering is defined as:

Wk =
k∑
r=1

Dr .

The idea of the gap statistic method is to compare Wk and its expected value under

a reference distribution of the dataset. Therefore, the gap value is defined as:

Gapn(k) = E∗n{log(Wk)} − log(Wk)

where E∗n represents the expected value under a sample of size n based on a reference

distribution. The optimal number of clusters is the value k̂ for which Gapn(k) is

maximized. The selection of number of clusters via gap statistic is summarized

in [113].

The reference distribution can be one of two choices: uniform distribution

(Gap/Unif), or a uniform distribution over a box aligned with the principal com-

ponents of the dataset (Gap/PC). Experiments by Tibshirani et al. show that

Gap/PC finds the number of clusters more accurately, therefore we used Gap/PC

in this study [113].

The gap statistic is a powerful method for estimating the number of clusters in

a dataset. However, a study by Dudoit et al. showed that the gap statistic does not

estimate the correct number of clusters for every case [114]. This may be because
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Wk increases as the number of data points increases. Hierarchical structure of the

data may also cause problems. The data may be composed of nested clusters and

the gap statistic will be capturing only the minimum of these candidate numbers

of clusters. Yan et al. suggested a 2-step improvement to the gap statistic, called

the DD-weighted gap statistic [115]. They defined average within-cluster pairwise

distances for cluster r as follows:

Dr =
Dr

2nr(nr − 1)

and the weighted within-cluster sum of squares Wk as:

Wk =
k∑
r=1

Dr =
k∑
r=1

Dr

2nr(nr − 1)
.

Based on Wk, the weighted gap statistic Gapn(k) is defined as:

Gapn(k) = E∗n{log(Wk)} − log(Wk) .

Let DGapn(k) denote the difference in Gapn(k) when the number of clusters is raised

from k-1 to k. DGapn(k) is defined as:

DGapn(k) = Gapn(k)−Gapn(k − 1) .

DGapn(k) > 0 for k < k̂, and otherwise it will be close to zero. Therefore, to find

a “knee” point in the plot, they introduce a second difference equation and define

DDGapn(k) as:

DDGapn(k) = DGapn(k)−DGapn(k + 1)

= 2Gapn(k)−Gapn(k − 1)−Gapn(k + 1) .

DDGapn(k) is maximized when k is equal to the true number of clusters. The

advantage of DDGapn(k) over the gap statistic is that there may be multiple peaks

in the plot of DDGapn(k) and this may indicate a hierarchical structure in the data.
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Table 3.2: Contingency table of a clustering, where rows represent true
classes and columns represent found clusters. Given n data
points in the dataset, a + b + c + d =

(
n

2

)
.

Same cluster Different clusters
Same class a b

Different classes c d

In such cases, multilayer analysis should be used instead of a single step procedure.

F-measure The F-measure is a weighted combination of precision and recall of a

clustering. Since the F-measure combines precision and recall of clustering results, it

has proven to be a successful metric. We use the F-measure to evaluate how similar

the tensor sublineages are to the SpolDB4 families. According to the contingency

table in Table 3.2, precision, recall, and F-measure are defined as:

P =
a

a+ c

R =
a

a+ b

F =
2PR

P +R
.

3.2.3 Multiway Partial Least Squares Regression (N-PLS)

N-PLS is a multiway regression method where at least one of the independent

and dependent blocks has at least three modes created by Bro et al. by generalizing

PLS to multiway data [116]. Consider independent variables in the X-block, X ∈
RI×J×K , and dependent variables in the Y-block, Y ∈ RI×M . In our experiments,

the X-block is a three-way array and the Y-block is a two-way array. The multiway

array X is decomposed using a matricized version X ∈ RI×JK as:

X = t
(
wK ⊗wJ

)′
+ E (3.1)

and the two-way array Y is decomposed as:
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Y = uq′ + F (3.2)

where t ∈ RI×1 and u ∈ RI×1 are score vectors of X and Y. wJ ∈ RJ×1 and

wK ∈ RK×1 are the loading vectors (weights) of the second and third modes of X

respectively. q ∈ RM×1 is the loading vector of Y. E ∈ RI×JK and F ∈ RI×M are

the residuals of X and Y respectively.

Notice that the two-way array Y is decomposed into one score and one loading

vector, whereas the matricized three-way array X is decomposed into one score

and two loading vectors, wJ and wK. This is the main difference between N-PLS

and PLS. At each iteration of N-PLS, a new PLS component is added. If n PLS

components are used, X is decomposed into component matrices T ∈ RI×n, WJ ∈
RJ×n, WK ∈ RK×n, and Y is decomposed into component matrices U ∈ RI×n,

Q ∈ RM×n.

The aim of N-PLS is to maximize the covariance of X and Y. For this purpose,

we define an inner relation linking the X and Y blocks, using their score matrices,

T and U:

U = TB + Eu . (3.3)

This requires finding loading vectors wJ and wK such that the covariance of t and

y are maximized:

A = max
wJ,wK

[
cov(t, y) min

(
I∑
i=1

J∑
j=1

K∑
k=1

(
xijk − tiwjJwkK

)2)]

= max
wJ,wK

(
I∑
i=1

J∑
j=1

K∑
k=1

yixijkwj
Jwk

K

)

= max
wJ,wK

(
J∑
j=1

K∑
k=1

zjkwj
Jwk

K

)

where Z ∈ RJ×K is a matrix with zjk =
I∑
i=1

yixijk and
∣∣∣∣wJ ∣∣∣∣ =

∣∣∣∣wK∣∣∣∣ = 1. To
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maximize this expression, we write it in matrix notation:

A = max
wJ,wK

((
wJ
)′

ZwK
)
⇒ (wJ, wK) = SV D(Z) .

The problem of finding wJ and wK is simply solved by SVD on Z [77,116]. wJ and

wK are first left and right singular vectors of Z. To reconstruct Y, we substitute

(3.3) in Equation (3.2):

Y = (TB + Eu) Q′ + F

Y = TBQ′ + EuQ′ + F

Y = TBQ′ + F∗ (3.4)

Given X and its decomposition matrices, we can make predictions for a new

X-block, using equation 3.4. The derivation of the full and closed predictions with

N-PLS has been presented by Smilde et al. [117]. Three alternative methods are

proposed by De Jong et al. for derivation of training models via regression coeffi-

cients [118]. Bro et al. proposed an improved N-PLS method with better fit of the

independent data, keeping regression coefficients and predictions the same [119].

The N-PLS model of a multiway array is a multilinear model, like PARAFAC,

which means that it has no rotational freedom. Therefore, the N-PLS model of

a multiway array is unique. In this study, we used a 3-way array as the X-block

and a 2-way array as the Y-block, therefore we are particularly working on the Tri-

PLS2 version of N-PLS, which is summarized in Algorithm 6. The term X(1) in the

algorithm refers to X matricized along the first mode. The X-block and Y-block are

centered and scaled prior to application of the algorithm. The preprocessing and

postprocessing of both X-block and Y-block are done according to centering and

scaling methods explained in [120].



43

Algorithm 6 Tri-PLS2(X ∈ RI×J×K, Y ∈ RI×M, N)

1: X0 = X(1)

2: y0 = Y(:, 1)
3: for i = 1 to N do
4: repeat

5: Calculate matrix Z ∈ RJ×K such that zjk =
I∑
l=1

ylxljk

6: Compute SVD of Z: Z = UΣV
′

7: Calculate loading vectors as first left and right singular vectors of Z:
wJ = U(:, 1) wK = V(:, 1)

8: Calculate score vector t
t = T(:, i) = Xi−1

(
wK ⊗wJ

)
9: q = Y

′
T/ | Y′

T |
10: yi−1 = Yq
11: until yi−1 converges
12: Calculate regression coefficient b:

b = B(:, i) =
(
T
′
T
)−1

T
′
yi−1

13: Deflate X and Y
Xi = Xi−1 − t

(
wK ⊗wJ

)′
Y = Y −Tbq

′

14: end for

3.3 Results

Multiple biomarkers of the MTBC genome in a relational database can be

represented as a high-dimensional dataset for multiway analysis. The multiple-

biomarker tensor is constructed this way, with one of the modes representing strains

and other modes representing biomarkers. In our experiments, we use this mul-

tidimensional array or tensor with three modes representing strains, spoligotype

deletions, and MIRU patterns. This multiple-biomarker tensor captures three key

properties of MTBC strains: spoligotype deletions, number of repeats in MIRU loci,

and coexistence of spoligotype deletions with MIRU loci.

We used the tensor clustering framework to cluster MTBC strains using mul-

tiple biomarkers, and compared the clustering to SpolDB4 sublineages. Next, we

used supervised tensor learning and classified MTBC strains into major lineages us-

ing spoligoype deletions and MIRU patterns. We compared multiway and two-way

supervised learning methods based on their prediction accuracy for major lineage
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Table 3.3: Number of components used in PARAFAC and Tucker3 mod-
els to fit the tensors for the datasets to be clustered. We used
the core consistency diagnostic, denoted as CC in the table, to
validate PARAFAC models and percentage of explained vari-
ance to validate Tucker3 models.

Major Lineage Tensor size PARAFAC Tucker3
# Components CC / Variance # Components Variance

M. africanum 64 × 22 × 12 3 95.08 / 93.33 [4 3 1] 91.94
M. bovis 102 × 34 × 12 2 100.00 / 86.02 [7 5 1] 91.05

East Asian (Beijing) 571 × 5 × 12 2 100.00 / 81.58 [3 4 2] 93.09
East-African Indian (CAS) 508 × 18 × 12 3 90.75 / 80.48 [6 6 4] 94.27

Indo-Oceanic 1023 × 28 × 12 5 92.99 / 80.35 [15 13 5] 95.55
Euro-American 4580 × 109 × 12 14 99.06 / 89.83 [14 13 5] 89.77

classification. In the following section, we use the unsupervised tensor clustering

framework on multiple-biomarker tensors to subdivide major lineages of MTBC

into sublineages.

3.3.1 Subdivision of major lineages into sublineages

We subdivide each major lineage of MTBC into sublineages using multiple-

biomarker tensors. For each major lineage, we generated the multiple-biomarker

tensor using spoligotypes and MIRU types and applied multiway models to iden-

tify putative sublineages of each major lineage. Two multiway analysis methods

were used: PARAFAC and Tucker3. Details of the methods and how the model

parameters or components were selected can be found in the methods section. The

validated multiway models with numbers of components for each major lineage are

shown in Table 3.3. To evaluate the resulting clusters, we compared them to the

published SpolDB4 families for each major lineage. The results are summarized

in Table 3.4. We used the F-measure to measure how well the tensor sublineages

match the SpolDB4 families with 1 indicating an exact match and 0 indicating no

match. The average best-match stability is used to assess certainty of tensor sublin-

eages respectively with 1 indicating highly stable clusters. For each major lineage,

results show that the tensor analysis finds highly stable sublineages (the best-match

stability is ≥84%) and that the number of sublineages found using tensors is close

but not always identical to the number of SpolDB4 families.

The F-measure values range from 53% to 88% indicating that the sublineages

found by the tensors only partially overlap with those of SpolDB4. Recall that the
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Table 3.4: F-measure and average best-match stability are used to as-
sess the agreement of the tensor sublineages to the SpolDB4
lineages and certainty of tensor sublineages respectively.

Major Lineage # SpolDB4 families # Tensor sublineages F-measure Stability

M. africanum 4 4 0.66 1
M. bovis 5 3 0.71 1

East Asian (Beijing) 2 6 0.88 1
East-African Indian (CAS) 4 4 0.75 1

Indo-Oceanic 13 9 0.67 0.86
Euro-American 33 35 0.53 0.84

SpolDB4 families were created by expert analysis using only spoligotypes and that

analysis by alternative biomarkers such as SNP and LSP has led to alternative defi-

nitions of MTBC sublineages. The tensor sublineages are based on spoligotype and

MIRU patterns, thus in some cases the tensor divides SpolDB4 families due to dif-

ference in MIRU patterns even if the spoligotypes match. In other cases, the tensor

analysis merges the SpolDB4 families because the collective spoligotypes and MIRU

patterns are very close. In some cases, the tensor analysis almost exactly reproduces

a SpolDB4 family providing strong support for the existence of these families with

no expert guidance. In addition, the MIRU patterns provide additional evidence

for the existence of these distinct sublineages. Thus, multiway analysis of MTBC

strains of each major lineage with multiple biomarkers leads to new sublineages and

reaffirms existing ones. Further insight can be obtained by examining the putative

sublineages for each major lineage, which is detailed next.

3.3.1.1 M. africanum

The most stable clusters were produced using PARAFAC and it constructed

four putative sublineages of M. africanum, denoted MA1 to MA4. Table 3.5 gives

the stability of each sublineage and the correspondence between the tensor sublin-

eages and the SpolDB4 families. These four putative sublineages are quite distinct

as shown by the stability of 1 for each sublineage and the clear separation of the

four sublineages in the PCA plot in Figure 3.6. Figure 3.7 shows heat maps repre-

senting the spoligotype and MIRU signatures for each tensor sublineage, with white

indicating 0 probability and black indicating probability of 1.

The tensor sublineages strongly support the existence of the SpolDB4 AFRI 1,

AFRI 2 and AFRI 3 families and show that the AFRI family is composed of these
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Table 3.5: Confusion matrix for 64 distinct M. africanum strains show-
ing the correspondence between the SpolDB4 families and ten-
sor sublineages. The stability of each tensor sublineage is given
in the second row. All four M. africanum sublineages have
a stability of 1, indicating that clear and distinct genetic di-
versity exists between the M. africanum sublineages. Each
number in the table represents the number of strains that be-
long to associated SpolDB4 lineage in that row and associated
tensor sublineage in that column.

MA1 MA2 MA3 MA4

Stability 1 1 1 1

AFRI 2 5 1 0
AFRI 1 21 0 0 16
AFRI 2 0 12 0 0
AFRI 3 0 1 6 0

Figure 3.6: Clustering plot of M. africanum strains using Principal
Component Analysis on the score matrix obtained from the
PARAFAC model. Four putative tensor sublineages, MA1
to MA4, are clearly distinct along the principal component
axes.
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Figure 3.7: Spoligotype and MIRU signatures of tensor sublineages of
M. africanum strains. White indicates probability of 0 and
black indicates probability of 1. Intermediate colors represent
probabilities in the range (0, 1). MA1 and MA4 are simi-
lar in their MIRU signatures, and MA4 strains lack spacers
22 through 24, in addition to the deletions of MA1 strains.
MIRU signatures of MA2 and MA3 strains are also similar,
and MA2 has an extra deletion, 21 through 24, in addition
to the deletions of MA3 strains.
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Table 3.6: Confusion matrix for 64 distinct M. africanum strains show-
ing the correspondence between the West African 1 and 2
sublineages and tensor sublineages. For the data not from
MIRU-VNTRplus, the lineage is indicated as unspecified.

MA1 MA2 MA3 MA4

West African 1 0 5 0 0
West African 2 21 0 0 16

Unspecified 2 13 7 0

three families. With an F-measure of 66%, the tensor sublineages differ markedly

from the SpolDB4 families for the M. africanum lineage. The AFRI family results

largely explain this difference – AFRI is spread across three tensor sublineages. Dis-

regarding AFRI, sublineages MA2 and MA3 match families AFRI 2 and AFRI 3

respectively. Interestingly, AFRI 1 is further subdivided into sublineages MA1 and

MA4. The spoligotypes in MA1 and MA4 differ by only one contiguous deletion

of spacers 22 through 24, but their MIRU signatures clearly distinguish them espe-

cially in MIRU loci 10, 16 and 40. The tensor indicates that the AFRI sublineage

classification defines somewhat generic M. africanum strains that can be distinctly

placed in the groups MA1 (part of AFRI 1), MA4 (other part of AFRI 1), MA2

(AFRI 2) and MA3 (AFRI 3).

The MIRU-VNTRplus labels, determined on the basis of LSPs, indicate that

there are two sublineages, West African 1 and West African 2, within M. africanum.

Table 3.6 indicates the correspondence between the tensor sublineages and MIRU-

VNTRplus labels. MA1 and MA4 correspond to West African 2 and MA2 corre-

sponds to West African 1. There is no data labeled by MIRU-VNTRplus in MA3,

but we speculate that it is West African 1 since MA2 and MA3 have more closely

related MIRU and spoligotype signatures.

3.3.1.2 M. bovis

PARAFAC generated the most stable clusters and constructed 3 sublineages

for M. bovis, MB1, MB2, and MB3, while the dataset contains 5 SpolDB4 families,

BOV, BOVIS1, BOVIS1 BCG, BOVIS2, and BOVIS3. Table 3.7 gives the corre-

spondence between the tensor sublineages and the SpolDB4 families. All clusters
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Table 3.7: Confusion matrix of M. bovis strains clustered into 3 groups
using PARAFAC. Correct labels are SpolDB4 labels on the
rows, and tensor sublineages are represented by each column.
Stability of 1 for the tensor sublineages indicates that they
have clean and marked differences based on their genotype.
MB1 contains all BOVIS2 strains, MB2 contains all BOVIS3
strains, and MB3 contains all BOVIS1 and BOVIS1 BCG
strains.

MB1 MB2 MB3

Stability 1 1 1

BOV 7 5 5
BOVIS1 0 0 29

BOVIS1 BCG 0 0 11
BOVIS2 24 0 0
BOVIS3 0 21 0

have perfect stability and are well distinguished in the PCA plot in Figure 3.8. Fig-

ure 3.9 shows heat maps representing the spoligotype and MIRU type signatures of

tensor sublineages. Much like the M. africanum SpolDB4 AFRI family, the BOV

family defines a generic M. bovis sublineage that spreads across all three tensor

sublineages. Disregarding BOV, MB3 consists of all of BOVIS1 and BOVIS1 BCG

strains. Since BOVIS1 BCG is the attenuated bacillus Calmette-Guérin (BCG) vac-

cine strain, it is difficult to distinguish it from BOVIS1 using only MIRU patterns

and spoligotypes. Therefore, the merger of BOVIS1 and BOVIS1 BCG is expected

given the genetic similarity between the two groups of strains. Disregarding BOV,

the MB1 and MB2 sublineages exactly match the SpolDB4 families BOVIS2 and

BOVIS3 respectively.

3.3.1.3 East Asian (Beijing)

The most stable clusters are produced by Tucker3 and it constructs six distinct

sublineages of East Asian (Beijing), denoted B1 through B6. The variability in

the spoligotypes of East Asian is limited to spacers 35 through 43 since all East

Asian strains have spacers 1 to 34 absent. Since the SpolDB4 classification is based

only on spoligotypes, the limited variability allows only two families, BEIJING and

BEIJING-LIKE. Table 3.8 shows the correspondence between tensor sublineages and
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Figure 3.8: Clustering plot of M. bovis strains using Principal Compo-
nent Analysis. Three putative tensor sublineages, MB1 to
MB3, are clearly separated.

the SpolDB4 families. The clustering plot of tensor sublineages is shown in Figure

3.10. Heat maps representing the spoligotype and MIRU type signatures of tensor

sublineages are shown in Figure 3.11. The tensor cleanly subdivides BEIJING into

three sublineages B1, B4 and B6, all with stability 1. Spoligotype signatures of

these sublineages differ. B1 strains have spacers 35 through 43 present, whereas B4

strains lack spacer 37, and B6 strains lack spacer 40. MIRU signature of sublineage

B4 is clearly distinct in MIRU locus 40, having 3 repeats for most strains. The

tensor subdivides the BEIJING-LIKE into sublineages B2, B3 and B5, each with

distinct spoligotype signature. They all lack spacers 35 through 36. In addition,

B2 strains lack spacer 37, and B3 strains lack spacer 40. Thus, the tensor strongly

supports the existence of BEIJING and BEIJING-LIKE families, but also suggests

that they can be further subdivided.
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Figure 3.9: Spoligotype and MIRU signatures of tensor sublineages of
M. bovis strains. Although MIRU signatures of MB1 and
MB2 strains are similar, spoligotype signatures of MB1 and
MB2 strains are clearly distinguishable by extra deletions of
13 through 14 in all MB2 strains, and deletions of 5 through
7 in some MB2 strains.

Table 3.8: Confusion matrix of East Asian (Beijing) strains clustered into
6 groups using Tucker3. Correct labels are SpolDB4 labels
on the rows, and tensor sublineages are represented by each
column. The six highly stable tensor sublineages are indica-
tive of additional genetic diversity within the BEIJING and
BEIJING-LIKE sublineages.

B1 B2 B3 B4 B5 B6

Stability 1 1 1 1 1 1

BEIJING 468 0 0 18 0 41
BEIJING-LIKE 0 16 8 0 20 0

3.3.1.4 East-African Indian (CAS)

Tucker3 generated the most stable clusters and it constructed four distinct

sublineages for East-African Indian (also known as CAS) denoted C1, C2, C3, and

C4. The strains are also labeled with four SpolDB4 lineages: CAS, CAS1 DELHI,

CAS1 KILI and CAS2. Table 3.9 shows the correspondence of tensor sublineages

and SpolDB4 families. Figure 3.12 shows the clustering plot of tensor sublineages

and Figure 3.13 shows spoligotype and MIRU type signatures of tensor sublineages.
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Figure 3.10: Clustering plot of East Asian (Beijing) strains using Prin-
cipal Component Analysis. Six putative tensor sublineages,
B1 to B6, are clearly distinct.

All sublineages are highly stable with stability 1. Much like with AFRI and BOV,

the generic CAS family is divided across all tensor sublineages. C3 only contains

CAS strains. Disregarding CAS, C1 contains most CAS1 DELHI strains and all

CAS2 strains. C4 contains all CAS1 KILI strains. C2 contains 2 CAS1 DELHI

strains, but the vast majority (331 strains) of CAS1 DELHI strains fall in C1. In

addition to the common deletions of East-African Indian (CAS) strains, C2 strains

lack spacer 22, C3 strains lack spacers 20 through 22, and C4 strains lack spacers

20 through 22 and spacer 35. Variabilities in MIRU loci 10, 26, 31 and 40 are also

key to defining differences in the sublineages. C2 and C3 strains differ by variations

in MIRU locus 10. C4 strains which include all CAS1 KILI strains exhibit a very

distinct MIRU signature compared to other tensor sublineages, especially in MIRU

locus 26.
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Figure 3.11: Spoligotype and MIRU signatures of tensor sublineages of
East Asian (Beijing) strains. Tensor sublineages B1, B4,
B6 include BEIJING strains and sublineages B2, B3, B5
include BEIJING-LIKE strains.

Table 3.9: Confusion matrix of East-African Indian (CAS) strains clus-
tered into 4 groups using Tucker3. Correct labels are SpolDB4
labels on the rows, and tensor sublineages are represented by
each column.

C1 C2 C3 C4

Stability 1 1 1 1

CAS 50 21 35 1
CAS1 DELHI 331 2 0 0
CAS1 KILI 0 0 0 23

CAS2 45 0 0 0
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Figure 3.12: Clustering plot of East-African Indian (CAS) strains using
Principal Component Analysis. Four putative tensor sub-
lineages, C1 to C4, are clearly distinct.

3.3.1.5 Indo-Oceanic

PARAFAC found the most stable clusters and it constructs nine distinct puta-

tive sublineages for Indo-Oceanic, denoted IO1 to IO9, while the dataset has thirteen

SpolDB4 lineages. Table 3.10 shows the correspondence of tensor sublineages and

SpolDB4 families. Figure 3.14 shows the clustering plot of tensor sublineages and

Figure 3.15 shows spoligotype and MIRU signatures of tensor sublineages. The EAI5

family acts much like the CAS, BOV, and AFRI families, spreading across all the

Indo-Oceanic sublineages except IO4. The small MANU1 family also spreads across

four sublineages. The existence of the MANU1 family has not been well established

by other biomarkers. Disregarding these two troubling families, the tensor sublin-

eages correspond closely to the SpolDB4 families. Table 3.10 shows that there is al-

most a one-to-one mapping between most SpolDB4 lineages and Indo-Oceanic tensor

sublineages. Specifically, the mapping between the most stable clusters (with sub-
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Figure 3.13: Spoligotype and MIRU signatures of tensor sublineages of
East-African Indian (CAS) strains. In addition to deletions
in C1 strains, C2 strains lack spacer 22. In addition to
deletions in C3 strains, C4 strains lack spacer 35 and have
only 1 repeat in MIRU 26. C2 and C3 strains are very close
in their MIRU signature, but they differ by variations in
MIRU locus 10.
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Figure 3.14: Clustering plot of Indo-Oceanic strains labeled by puta-
tive tensor sublineages using Principal Component Analysis.
The tensor sublineages are not as distinct as it was for the
previously analyzed major lineages, implying that the ten-
sor sublineages are well distinguished in the PCA plot if
they are stable.

lineage stability) and the families are: IO1 (.94) equals EAI6 BDG1, IO2 (1) equals

EAI3 IND, IO4 (1) equals ZERO, and IO6 (.91) equals most of EAI2 MANILLA.

All EAI strains are in IO9 (.77), all EAI1 strains are in IO8 (.86), all MICROTI

strains are in IO5 (0.56), and all ZERO strains are in IO4. All EAI2 NTB strains

are in IO5, all EAI3 IND strains are in IO2, and all EAI8 MDG strains are in IO7

(.84). EAI2 MANILLA is divided into two sublineages: 11 strains in IO5, 265 strains

in IO6. While the spoligotype and MIRU signatures show that there are distinct

EAI5 subgroups, the definition of the EAI5 and MANU1 groups are not well sup-

ported by the tensor analysis. They may represent a more generic sublineage that is

further subdivided. Distinct patterns are observable in the spoligotype and MIRU

signatures for most of the tensor sublineages.
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Figure 3.15: Spoligotype and MIRU signatures of tensor sublineages of
Indo-Oceanic strains.
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Table 3.10: Confusion matrix of Indo-Oceanic strains clustered into 9
groups using PARAFAC. Correct labels are SpolDB4 labels
on the rows, and tensor sublineages are represented by each
column. SpolDB4 lineages except EAI5 and MANU1 map to
distinct tensor sublineages.

IO1 IO2 IO3 IO4 IO5 IO6 IO7 IO8 IO9

Stability 0.94 1 0.90 1 0.56 0.91 0.84 0.86 0.77

EAI 0 0 0 0 0 0 0 0 6
EAI1 0 0 0 0 0 0 0 2 0

EAI1 SOM 0 0 2 0 0 0 8 107 0
EAI2 MANILLA 0 0 0 0 11 265 0 0 0

EAI2 NTB 0 0 0 0 15 0 0 0 0
EAI3 IND 0 105 0 0 0 0 0 0 0
EAI4 VNM 0 0 0 0 0 0 0 3 42

EAI5 231 24 26 0 3 10 35 32 31
EAI6 BGD1 33 0 0 0 0 0 0 0 10
EAI8 MDG 0 0 0 0 0 0 4 0 0

MANU1 1 0 0 0 0 5 0 2 1
MICROTI 0 0 0 0 3 0 0 0 0

ZERO 0 0 0 6 0 0 0 0 0

3.3.1.6 Euro-American

Tucker3 found the most stable clusters and it generates 35 sublineages for

Euro-American, denoted E1 to E35, while there are 33 SpolDB4 lineages labeled

Euro-American. See additional file at http://www.biomedcentral.com/1471-2164/

12/S2/S1/additional/ for the confusion matrix of Euro-American strains that shows

the correspondence of tensor sublineages and SpolDB4 families. Figure 3.16 shows

the clustering plot of tensor sublineages. Figure 3.17 and Figure 3.18 show the

spoligotype and MIRU signatures of tensor sublineages respectively.

Strains belonging to families H2, H37Rv, LAM12 MAD1, T1 (Tuscany vari-

ant), T1 RUS2, T4, T5 MAD2, and T5 RUS1 are clustered in tensor sublineages

E9, E7, E8, E24, E11, E34, E34, and E17 respectively. In contrast, the T1 family,

an ancestor strain family, is distributed across 25 tensor sublineages, with most T1

strains in E34. Sublineage stability is above .90 for 18 tensor sublineages. Spolig-

otype and MIRU signatures of sublineages suggest either subdivision or merging

of SpolDB4 families. For instance, tensor sublineages E2, E6, and E32 include T1

http://www.biomedcentral.com/1471-2164/12/S2/S1/additional/
http://www.biomedcentral.com/1471-2164/12/S2/S1/additional/
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Figure 3.16: Clustering plot of Euro-American strains labeled by 35 ten-
sor sublineages using Principal Component Analysis. The
tensor sublineages are not as distinct as they were for the
previously analyzed major lineages, reflecting the variabil-
ity in the tensor cluster stability. It may also be due to the
anticipated hierarchical structure in Euro-American strains.

strains only. In addition to common spacer deletions of Euro-American strains, E2

strains lack spacers 15 through 26, E6 strains lack spacers 9 through 23, and E32

strains lack spacers 1 through 19, which are all variations in spoligotype signatures

of T1 strains. This sublineage classification further subdivides the poorly-defined

ancestor T1 family. Strains of LAM families on the other hand are grouped in 17

tensor sublineages. Prior studies have found that LAM Rio strains identified by

SNPs are found in multiple SpolDB4 lineages [121]. Therefore, it is expected that

the use of multiple biomarkers leads to subdivision or merging of some SpolDB4

families.

Although most stable clusters of the Euro-American strain dataset are found

using best-match stability, the DD-weighted gap statistic plot has multiple peaks.
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Figure 3.17: Spoligotype signatures of tensor sublineages of Euro-
American strains.
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Figure 3.18: MIRU signatures of tensor sublineages of Euro-American
strains.
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DD-weighted gap statistic, detailed in the methods section, is a cluster validity mea-

sure which is also used for detecting hierarchical structure in the datasets. Multiple

peaks in DD-weighted gap statistic plot suggest that the Euro-American dataset

may have a multi-level hierarchical structure. Model order selection with random-

ized maps by Bertoni and Valentini can be used to detect the hierarchical structure

in the Euro-American dataset [122].

We used the unsupervised tensor clustering framework to cluster MTBC strains

of major lineages into sublineages. Next, we turn our attention to supervised ten-

sor learning methods on multiple-biomarker tensors to classify strains into major

lineages.

3.3.2 Classification of MTBC strains into major lineages using two-way

and multiway supervised learning

Multiple-biomarker tensors can be used in supervised classification models as

well as in unsupervised models. We use multiway partial least squares (N-PLS) on

multiple-biomarker tensors to predict major MTBC lineages [116]. In our experi-

ments, we used spoligotype and MIRU as biomarkers and predicted the six major

lineages using the same data as for the above unsupervised learning experiments

combined into a single dataset. More specifically, we used 12 spoligotype deletions

found informative in major lineage classification combined with 12-loci MIRU [26].

We predicted major lineages with the N-PLS multiway method and compared it

with standard two-way PLS and prior results for conformal Bayesian Networks [20].

Table 9 shows the average testing F-measure as estimated by 5-fold cross-validation.

We generate the multiple-biomarker tensor using 12 spoligotype deletions and 12-

loci MIRU with one additional bit indicating whether the at least one MIRU pattern

includes letter rather than number of repeats, and create a predictive model using

the N-PLS multiway method. The model for standard 2-way PLS is created by

representing the data as a matrix with columns corresponding to 12 spoligotype

deletions and 12-loci MIRU with the additional indicator bit, and rows correspond-

ing to MTBC strains. The number of latent variables for both N-PLS and PLS are

selected by inner 4-fold cross-validation of the training set data only.
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Table 3.11: Multiway N-PLS and standard two-way PLS classification ac-
curacy results when 12 spoligotype deletions and MIRU pat-
terns are used to classify MTBC strains into major lineages.
Highly accurate classification results compare favorable to
prior results based on a conformal Bayesian Network in [20].

Method Average F-measure

N-PLS 0.9961 ± 0.0009
Standard PLS 0.9955 ± 0.0017

Conformal Bayes Net 0.9897

We compare N-PLS, standard PLS and Conformal Bayes Network (CBN)

methods by F-measure of major lineage classification and see that they are accurate

predictive models with no significant difference between the approaches. Table 3.11

shows the F-measure values for N-PLS, standard PLS and CBN. The average F-

measure of major lineage prediction on the same data using the CBN is 0.9897 [20].

This shows that N-PLS and standard PLS methods predict major lineages as accu-

rately as CBN, with a slightly better average F-measure value. All three methods

achieve outstanding results for major lineage classification with no significant dif-

ference between approaches.

3.4 Conclusion

This study investigates multiple-biomarker tensors and illustrates how they

can be used for both unsupervised and supervised learning models. First, a novel

clustering framework is used to analyze the sublineage structure of MTBC strains

based on multiple biomarkers. We generated multiple-biomarker tensors to rep-

resent multiple biomarkers of the MTBC genome and used multiway models for

dimensionality reduction. The multiway representation determines a transforma-

tion of the data that captures similarities and differences between strains based on

two distinct biomarkers. We clustered MTBC strains based on the transformed data

using improved k-means clustering and validated clustering results. We evaluated

the sublineage structure of major lineages of MTBC and found similarities and clear

distinctions in our subdivision of major lineages compared to the SpolDB4 classifi-

cation. Simultaneous analysis of spoligotype and MIRU through multiple-biomarker
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tensors and clustering of MTBC strains leads to coherent sublineages within major

lineages with clear and distinctive spoligotype and MIRU signatures. Second, we

demonstrated how the multiple-biomarker tensor can be used to predict major lin-

eages with extremely high accuracy competitive with other approaches. We show

that 3-way PLS, 2-way PLS and CBN models are accurate major lineage predictors

for MTBC strains.

The tensor clustering framework is flexible and can be applied to any multidi-

mensional strain data. The design of the resulting tensor depends on the question

to be answered. In this study, multiple-biomarker tensors are designed to find

groups of MTBC strains. Thus, the application of the tensor clustering frame-

work on multiple-biomarker tensors leads to sublineages of MTBC within major

lineages. The multiple-biomarker tensor is further validated by the fact that it can

used to predict known major lineages with high accuracy using N-PLS. N-PLS with

multiple-biomarker tensors can be used for semi-supervised learning as well. This

can be useful for learning predictive models for sublineages in which only part of the

data is labeled with sublineages and the other part of the data has no labels. This

may result in more reliable and accurate classifiers of MTBC sublineages, and the

resulting sublineage classifiers would be a significant enhancement to TB control,

epidemiology and research. We leave this to future work.

The tensor clustering framework used in this study can be further extended

to find subgroups of MTBC strains based on other biomarkers such as RFLP and

SNPs. 15-loci MIRU and 24-loci MIRU patterns can also be used to represent MTBC

genomes with multiple-biomarker tensors. Moreover, more than two biomarkers can

be used in the MTBC genome representation. But, ambiguity in the tensor entries

is an open question that needs to be solved in the tensor representation when more

than two biomarkers are used. Addition of new biomarkers will increase the number

of modes of the multiple-biomarker tensor, but the multiway analysis methods will

remain the same.

Other questions of interest can be addressed by designing and analyzing host-

pathogen tensors to examine the relationship of the pathogen genotype with host

(or equivalent) attributes to examine questions of interest. For example, since the
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MTBC sublineages are known to be highly geographically dependent, a tensor which

combines the pathogen genotype with the country of birth of the host may reveal ad-

ditional sublineage structure and transmission patterns. A tensor combining MTBC

genotype and host disease phenotype such as site of infection and drug resistance

could be used to analyze MTBC genotype-phenotype relations.



CHAPTER 4

INFERRED SPOLIGOFOREST TOPOLOGY UNRAVELS

SPATIALLY BIMODAL DISTRIBUTION OF

MUTATIONS IN THE DR REGION

4.1 Introduction

Tuberculosis (TB) is a leading cause of death among infectious diseases. Tu-

berculosis is caused by Mycobacterium tuberculosis complex (MTBC). One third of

the human population is infected, either latently or actively, with TB [1]. DNA

fingerprinting of MTBC strains is used for tracking the transmission of tuberculosis.

Isolates from TB patients are genotyped using multiple biomarkers, which include

spacer oligonucleotide types (spoligotypes), Mycobacterium Interspersed Repetitive

Units - Variable Number Tandem Repeats (MIRU-VNTR), and IS6110 Restriction

Fragment Length Polymorphism (RFLP) [13,14,23].

Biomarkers of MTBC change over time. Brosch et al. presented an evolu-

tionary repetition model based on the analysis of twenty regions of difference (RD)

found in a comparison of whole genome sequences of MTBC clinical strains [11,123].

Tanaka et al. introduced cluster-graphs to analyze genotype clusters of MTBC sepa-

rated by a single mutation step [124]. Based on the observation that deletion length

follows a Zipf distribution, Reyes et al. presented a probabilistic mutation model

of spoligotypes to disambiguate the ancestors [89]. Grant et al. simulated stepwise

loss or gain of repeats in MIRU loci using a stochastic continuous-time model, and

suggested that all MIRU loci mutate very slowly [125].

In this study, we present a mutation model of spoligotypes based on variations

* Portions of this chapter previously appeared as:
C. Ozcaglar, A. Shabbeer, N. Kurepina, N. Rastogi, B. Yener, and K. P. Bennett, “Inferred

spoligoforest topology unravels spatially bimodal distribution of mutations in the DR region,”
IEEE Transactions on NanoBioscience, in press, 2012.

C. Ozcaglar, A. Shabbeer, N. Kurepina, B. Yener, and K. P. Bennett, “Data-driven insights into
deletions of Mycobacterium tuberculosis complex chromosomal DR Region using spoligoforests,”
in Proc. 2011 IEEE Int. Conf. Bioinformatics and Biomedicine (BIBM), Atlanta, GA, pp. 75-82,
2011.
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Figure 4.1: The spoligoforest of the CDC dataset. Each node represents
a distinct spoligotype, and each edge represents a one-step
mutation event from parent spoligotype to child spoligotype.
Node sizes are proportional to the number of patients in-
fected with MTBC strains having the spoligotype, in log
scale. Nodes are colored by major lineages of MTBC strains.
The spoligoforest generator is implemented in Java, using the
visualization software Graphviz [126].

in the direct repeat (DR) region. To disambiguate the parents in the cluster-graph,

we add an independent biomarker, MIRU-VNTR. First, we use a large patient

dataset from the United States Centers for Disease Control and Prevention (CDC)

and generate the most parsimonious forest of spoligotypes, called a spoligoforest.

The spoligoforest generation is based on the contiguous deletion assumption, nonex-

istence of convergent evolution and three distance measures defined on spoligotypes

and MIRU patterns. The spoligoforest of the CDC dataset in Figure 4.1 generated

using this model displays the putative history of mutation events in the chromo-

somal DR region. Each node in the spoligoforest represents a distinct spoligotype,

and each edge represents a potential mutation event from parent spoligotype to

child spoligotype. The number of spacers lost in a mutation event is referred as
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the mutation length. We compare the DR evolution model to existing mutation

models in terms of number of mutations and segregation accuracy and show that

our mutation model with the additional biomarker, MIRU-VNTR, leads to as many

within-lineage mutation events as in other mutation models. We identified topolog-

ical attributes of the spoligoforest and gave insights into variations of spoligotypes.

Based on the spoligoforest, the number of descendant spoligotypes follows a power

law distribution. On the other hand, based on goodness-of-fit results, the mutation

length frequency does not follow a power law distribution, in contrast to prior stud-

ies. The number of mutations at contiguous DR loci follows a bimodal distribution,

and the modes are spacer 13 and spacer 40, which are hotspots, e.g. sites of in-

creased observed variability. Spacer 34 is the change point in the distribution, and

it is stable, which is due to lack of spacers 33-36 in most MTBC strains in the CDC

dataset. We hypothesized that this bimodal distribution results in unobservable

longer mutation events, which is why power law distribution is not a plausible fit

to mutation length frequency. Based on this observation, we built two alternative

models for mutation length frequency. The Starting Point Model (SPM) conditions

the mutation length on the starting point of mutation, and the Longest Block Model

(LBM) conditions the mutation length on the length of the longest contiguous block

spacers beyond the starting point of mutation. Both SPM and LBM are plausibly

good models for mutation length frequency distribution.

4.2 Background

In order to build a mutation model for evolution of the chromosomal DR re-

gion, we used two biomarkers of MTBC: spoligotypes and MIRU patterns. Each

biomarker has a different mutation mechanism which is analyzed separately. Spolig-

otypes can lose spacers in the DR region, but not gain, while MIRU loci can either

lose or gain tandem repeats [104,127,128]. In this section, we give a brief background

on spoligotyping, MIRU-VNTR typing, and mutation of both biomarkers.
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4.2.1 Spoligotyping

Spoligotyping is a PCR-based genotyping method of MTBC that exploits the

polymorphism in the DR locus. The DR region belongs to the class of clustered

regularly interspaced palindromic repeats (CRISPR) loci [129]. It comprises of di-

rectly repeating sequences of 36 bp, separated by unique spacer sequences of 36 to 41

bp [17]. One repeat sequence and the following spacer sequence together is termed

a direct variable repeat (DVR). A spoligotype is composed of 43 spacers, which are

represented by a 43-bit binary sequence, where zeros and ones indicate absence and

presence of particular spacer in the DR locus respectively.

4.2.2 MIRU-VNTR typing

MIRU is a homologous 46-100 bp DNA sequence tandemly repeated and dis-

persed within intergenic regions of MTBC genome [130,131]. Among 12-loci, 15-loci

and 24-loci MIRU pattern analysis formats, we used 12-loci MIRU patterns in this

study for genotyping MTBC [18]. The 12-loci MIRU pattern consists of loci 154 /

MIRU02, 580 / MIRU04, 960 / MIRU10, 1644 / MIRU16, 2059 / MIRU20, 2531 /

MIRU23, 2687 / MIRU24, 2996 / MIRU26, 3007 / MIRU27, 3192 / MIRU31, 4348 /

MIRU39, and 802 / MIRU40. The MIRU pattern of an MTBC strain is represented

as a vector of length 12, where each entry indicates the number of repeats in the

specified MIRU locus.

4.2.3 Mutation of spoligotypes and repeats in MIRU loci

Spacers in the DR region can be lost as a result of chromosomal rearrangement

event, but not gained [104, 128]. As a result, mutation of spoligotypes is unidirec-

tional and can only result in variations of type 1→0 at each locus. Therefore, similar

to Camin-Sokal parsimony, mutation of spoligotypes is irreversible [93, 132]. More-

over, in a one-step mutation event, one or more contiguous spacers can be deleted.

We refer to the rule of irreversible mutation of contiguous spacers as the contiguous

deletion assumption [104,128].

Tandem repeats in a MIRU loci can either be lost or gained as a result of

duplication or multiplication in a mutation event [127]. Therefore, mutations at
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MIRU loci are bidirectional, and can result in increment or decrement in the number

of repeats. The variations in number of repeats in MIRU loci are simulated using

the stepwise mutation model [133,134].

4.3 Methods

4.3.1 CDC dataset

The CDC dataset comprises of 9336 unique MTBC strains as determined by

spoligotype and 12-loci MIRU patterns, collected by the United States Centers for

Disease Control and Prevention (CDC) from MTBC isolates of patients in the United

States from 2004 to 2008 [20]. There are 2841 unique spoligotypes and 4648 unique

MIRU patterns. The strains are labeled by major lineages: East Asian (Beijing),

East-African Indian (CAS), Euro-American, Indo-Oceanic, M. africanum and M.

bovis.

4.3.2 Most parsimonious forest generation

We used both spoligotypes and MIRU patterns to simulate the evolution of

DR loci reflected in spoligotype changes. We assumed that convergent evolution is

rare, and loss of spacers is irreversible. We used three distance measures for strain

comparison to generate the most parsimonious forest, which is the spoligoforest of

MTBC strains.

4.3.2.1 Assumptions

Mutations in the DR region involve deletion of contiguous spacers. Acquisition

of additional spacers is not observed [89, 104, 128]. We call this the contiguous

deletion assumption. We also hypothesize in our model that convergent evolution

does not occur. This is in accordance with studies of the MTBC genome which show

that homoplasy is observed rarely [104]. Using this hypothesis, we select the set of

most likely parents for each spoligotype in the spoligoforest.
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4.3.2.2 Distance measures for strain comparison

We used three distance measures based on two biomarkers of MTBC. Let ~s be

43-bit binary vector representing the spoligotype of an MTBC strain, and ~m be 12-

bit vector representing 12-loci MIRU pattern of an MTBC strain. The biomarkers

of MTBC are in the following format:

• ~si ∈ {0, 1}, where i ∈ {1, .., 43}

• ~mj ∈ {0, .., 15} ∪ {s, t, .., z}, where j ∈ {1, .., 12} 1 .

We defined three distance measures based on spoligotypes and MIRU pat-

terns: Hamming distance between spoligotypes, Hamming distance between MIRU

patterns, and L1 distance between MIRU patterns. Given two spoligotypes ~si and

~sj, the Hamming distance between them is defined as the number of spacers that

differ:

HS (~si,~sj) =
43∑
r=1

| ~sir − ~sjr |

where ~sir represents the presence of spacer r of spoligotype ~si. Similarly, the Ham-

ming distance between MIRU patterns is defined as the number of MIRU loci with

different number of tandem repeats:

HM (~mi, ~mj) =
12∑
r=1

| sign (~mir − ~mjr) |

where ~mjr represents the number of repeats at MIRU locus r of 12-loci MIRU

pattern ~mi. To highlight the difference in the number of tandem repeats at each

MIRU locus, we also defined the L1 distance between MIRU patterns:

LM (~mi, ~mj) =
12∑
r=1

| ~mir − ~mjr | .

In the spoligoforest, each spoligotype is associated with one or more MIRU patterns.

Therefore, we calculate the Hamming distance and L1 distance between the MIRU

1The letters {s, t, .., z} correspond to repeats with an additional mutation of 7 to 0 repeats
respectively. Therefore, to separate these repeat values from the ones with numeric representation,
the number of repeats {s, t, .., z} are considered equivalent to 107 to 100 repeats respectively.
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patterns of spoligotypes as the minimum of distance values between sets of MIRU

patterns associated with the two spoligotypes as follows:

HM (~si,~sj) = min
~mk∈si
~ml∈sj

HM (~mk, ~ml)

LM (~si,~sj) = min
~mk∈si
~ml∈sj

LM (~mk, ~ml) .

4.3.2.3 Validation of the model with segregation accuracy

Based on the assumption of negligibly infrequent convergent evolution, the

task of generating a mutation model of spoligotypes reduces down to finding a

unique parent spoligotype for each spoligotype, if a parent exists. First, we use the

contiguous deletion assumption to find a set of candidate parent spoligotypes which

may be immediate ancestors of the child spoligotype. Second, we use the three

distance measures defined above to find the most parsimonious forest. There are six

possible permutations of these distance measures. We used segregation accuracy to

find the one which leads to most parsimonious spoligoforest. Segregation accuracy

is defined as the percentage of within-lineage mutation events:

S =

∑
li=lj

dij∑
dij

where dij is an indicator of a deletion event in which parent spoligotype ~si mu-

tates into child spoligotype ~sj, and li represents the major lineage of MTBC strains

with spoligotype ~si. Maximum segregation accuracy is attained when the distance

measures are used in the following order to pick the only parent among possible

candidate parent spoligotypes: Hamming distance between MIRU patterns (HM),

Hamming distance between spoligotypes (HS), L1 distance between MIRU patterns

(LM). Finally, if multiple parents still exist, a single parent is chosen at random

from the set of parent candidates. The flowchart of steps to pick a single parent for

each spoligotype is shown in Figure 4.2.
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Figure 4.2: Flowchart of steps to pick the single parent for each spoligo-
type in the MakeSpoligoforest() algorithm using both spolig-
otypes and MIRU patterns. First, candidate parent spoligo-
types are found based on the contiguous deletion assumption
to ensure spacers in the DR region are only lost, but not
gained. Then, to disambiguate the candidate parent spolig-
otypes, the Hamming distance between MIRU patterns, the
Hamming distance between spoligotypes, and the L1 distance
between MIRU patterns are used, resulting in minimum evo-
lutionary change. Finally, if there are multiple parents still, a
single parent spoligotype is picked from among the candidates
at random. The spoligotype only variation of the algorithm
skips the steps denoted with *, and the MIRU pattern only
variation skips the steps denoted with +.



74

4.3.2.4 The algorithm

Based on the flowchart in Figure 4.2, we generate the most parsimonious

spoligoforest using Algorithm 1. Among all candidate parent spoligotypes, we first

pick the parent spoligotypes that conform to the contiguous deletion assumption.

Then, we reduce the size of the candidate parent set based on maximum parsi-

mony using three distance measures in the following order: Hamming distance be-

tween MIRU patterns, Hamming distance between spoligotypes, L1 distance be-

tween MIRU patterns. Finally, if there are multiple parents still, we pick the parent

spoligotype at random. We used variations of this algorithm. If only spoligotyping

is used, steps 4 and 6 are skipped in Algorithm 7. If only MIRU typing is used,

step 5 is skipped in the algorithm. The software for the spoligoforest generator is

available at http://sourceforge.net/projects/spolgenerator/. It is also available for

use within the TB-Lineage tool at http://tbinsight.cs.rpi.edu/run tb lineage.html.

Algorithm 7 MakeSpoligoforest(StrainDataset)

Input: StrainDataset with spoligotypes and MIRU patterns.
Output: Spoligoforest G = (V ,E), where node set V represents spoligotypes, and

edge set E represents spoligotype mutations.
1: E(G) = ∅
2: for each node s ∈ V (G) do
3: Find the set of candidate parents P for node s using the contiguous deletion

assumption.
4: Find P ′ ⊆ P with the minimum Hamming distance between MIRU patterns.

Set P = P ′.
5: Find P ′ ⊆ P with the minimum Hamming distance between spoligotypes. Set

P = P ′.
6: Find P ′ ⊆ P with the minimum L1 distance between MIRU patterns. Set

P = P ′.
7: if |P | > 1 then
8: Pick a node p ∈ P at random.
9: else

10: Pick the only node p ∈ P .
11: end if
12: Assign node p as the unique parent of node s.
13: Add the edge eps from node p to node s.

E = E ∪ {eps}.
14: end for

http://sourceforge.net/projects/spolgenerator/
http://tbinsight.cs.rpi.edu/run_tb_lineage.html
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4.3.3 Statistical analysis of power law distributions

We observed power law distributions in the topology of spoligoforests, and

tested the goodness-of-fit of these distributions. Power law distributions are often

observed in the topological and graph-theoretical attributes of biological networks

[135]. However, there is no single method widely accepted by scientific community

for fitting power law distributions [136]. We adopt the method of analyzing power

law distributions proposed by Clauset et al. [137]. According to this method, a

power law distribution function is of the form:

p(x) = c x−α; x ≥ xmin

where α is the power law exponent, c is the normalization constant, and xmin is

the lower bound for which the power law distribution holds. We also modified this

function to fit a discrete power law distribution within a finite range. The method

of maximum likelihood is used to estimate the exponent α. To find the lower bound

xmin, the Kolmogorov-Smirnov statistic is used to measure the maximum distance

between the cumulative distributions of the data and fitted power law model. The

xmin value which minimizes this distance is selected as the lower bound. Finally, to

test the goodness-of-fit of the power law distribution, we generate synthetic datasets

from a true power law distribution using the same parameters, and compute the

Kolmogorov-Smirnov statistic for each synthetic dataset relative to best-fit power

law for that dataset. We calculate the p-value as the fraction of synthetic datasets

for which Kolmogorov-Smirnov statistic is larger than the one observed for empirical

data. If p ≥ 0.1, then the power law distribution is a plausible fit to the data.

4.4 Results

We generated the most parsimonious spoligoforest of the CDC dataset using

Algorithm 1. The spoligoforest of the CDC dataset is shown in Figure 4.1. The

spoligoforest shows the spoligotypes of MTBC strains, and a putative history of

mutation events in the DR region reflected in spoligotype changes. Each node in

the spoligoforest represents a set of MTBC strains with a distinct spoligotype. Each

edge represents a potential mutation from parent spoligotype to child spoligotype.
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Table 4.1: Comparative analysis of mutation models of spoligotypes.
All four models lead to high segregation accuracy, while
MakeSpoligoforest() algorithm using both spoligotyping and
MIRU-VNTR typing results in slightly higher segregation ac-
curacy and maximizes the number of within-lineage mutation
events, but the differences are not statistically significant.

Model Segregation accuracy # Isolated nodes # Mutation events

Zipf model [89] 0.9921 235 2562
MakeSpoligoforest() (Spoligotyping) 0.9906 230 2562
MakeSpoligoforest() (MIRU typing) 0.9941 233 2562
MakeSpoligoforest() (Spol+MIRU) 0.9941 232 2562

There are 2841 nodes and 2562 edges in the spoligoforest. 2547 of these edges

represent a mutation event within the same major lineage, and the segregation

accuracy is 0.9941. Among 2841 nodes, 232 of them are orphan nodes, i.e. nodes

with no parent or child nodes.

We compare the mutation model to existing mutation models of spoligotypes

and verify that our mutation model leads to as many within-lineage mutation events

as that of other mutation models. We observed interesting patterns on the topolog-

ical properties of CDC spoligoforest and variations in DR loci. First, the number

of descendant spoligotypes follows a power law distribution. Second, the mutation

length frequency does not follow a power law. This contradicts the result of Reyes

et al. that the mutation length frequency of spoligotypes follows a Zipf model [89].

Third, the number of deletion events at each contiguous DR loci follows a spatially

bimodal distribution. According to this distribution, spacers 13 and 40 are iden-

tified as hotspots, and spacer 34 is the change point which is hypothesized to be

rarely exposed to mutation due to deletion of the spacer earlier in the DR evolu-

tion, rather than low mutation rate. Based on this spatially bimodal distribution,

we built the Starting Point Model and Longest Block Model for mutation length

frequency distribution. Details for each of these results are provided in the following

subsections.

4.4.1 Comparison to existing mutation models

Various models are used to generate a putative mutation history of spoligo-

types. The Zipf model by Reyes et al. is based on their observation that length
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Table 4.2: Candidate power law distributions and their goodness-of-fit
test results based on Kolmogorov-Smirnov test. Number of
descendant spoligotype frequency follows a power law distri-
bution. On the other hand, the two power law distribution fits
in the range [8,∞] and [1, 43] are not plausible fits to mutation
length frequency, as suggested by low p-values.

Attribute Power law distribution function Domain p-value Support for power law

D: Number of desc. spol. P (D = d) = 1.6906 d−2.0565 d ≥ 2 0.6330 Good

L: Mutation length
P1(L = l) = 152.9498 l−3.1020 l ≥ 8 0.0020 None
P2(L = l) = 0.5108 l−1.6963 1 ≤ l ≤ 43 0 None

of unambiguous mutation events follows a Zipf distribution, and they generate

spoligoforests based on this probabilistic model [89, 138]. We used an indepen-

dent biomarker, MIRU, to disambiguate the possible ancestors for each spoligotype.

We compared the Zipf model to our model, MakeSpoligoforest() algorithm, with

three variations: using spoligotyping only, using MIRU-VNTR typing only, and us-

ing spoligotyping and MIRU-VNTR typing as shown in Figure 4.2 in combination

with the original version of the algorithm described in the methods section. Ta-

ble 4.1 shows the comparative analysis of the resulting spoligoforests based on these

four models. In the spoligoforests of all four models, there are 2562 mutation events,

represented by edges in the spoligoforest. Isolated nodes in the spoligoforests are

the nodes with no parent or child spoligotype, so their ancestor and descendant

spoligotypes are unidentified from the mutation history. The number of isolated

nodes differs slightly. Segregation accuracy is the highest in the spoligoforest based

on MakeSpoligoforest() algorithm using both spoligotyping and MIRU-VNTR

typing, and equal to the segregation accuracy of the spoligoforest generated using

the variation of MakeSpoligoforest() algorithm with MIRU typing. However, the

difference between the segregation accuracy of different mutation models is not sta-

tistically significant. This validates that simpler spoligoforest models based only on

the length of deletion can be used with little or no degredation in the results.

4.4.2 Number of descendant spoligotypes

Each spoligotype can have at most one parent spoligotype, and any number of

child spoligotypes, assuming convergent evolution does not occur. A single mutation

event in the DR region results in a new child spoligotype. The number of immediate
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Figure 4.3: Number of descendant spoligotypes follows a power law dis-
tribution, which holds for spoligotypes with d ≥ 2 children
spoligotypes.

descendant spoligotypes for each spoligotype depends on the number of spacers

present in the DR region, which is equivalent to the copy number of the spoligotype.

In theory, the copy number of a spoligotype can range from 0 to 43, but not all

spoligotype representations were observed in the dataset we analyzed. Let di be the

number of descendants of the spoligotype represented by node si. Figure 4.3 shows

the cumulative distribution of descendant spoligotype count frequency P (D ≥ d) on

a log-log plot. We used the power-law fitting procedure introduced by Clauset et al.

[137] to test whether the data follows a power law distribution. Table 4.2 shows the

power law distribution function fit to the number of descendant spoligotypes. The

power law distribution holds for all spoligotypes with d ≥ 2 children spoligotypes.

Based on the Kolmogorov-Smirnov test, the p-value of 0.6330 is larger than 0.1,

which suggests that a power law is a plausible fit to the number of descendant

spoligotypes. The power law observation is based on two facts: 1) the higher the

copy number of the spoligotype, the more descendants it can have, 2) the number of

descendant spoligotypes increases due to the assumption of no convergent evolution,

which leads to higher genetic diversity. The number of descendants of a spoligotype
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can also be interpreted as the number of one-step deletion events that lead to new

spoligotypes.

4.4.3 Mutation length

Mutation length is defined as the number of contiguous spacers deleted in a

mutation event. According to the contiguous deletion assumption, at each mutation

event, a set of contiguous spacers can only be deleted, but not gained [89, 104]. In

theory, mutation length can range from 1 to 43. Reyes et al. used only unambigu-

ous deletion events in cluster-graphs, and observed that mutation length frequency

follows a Zipf distribution [89]. Based on the putative mutation history of spoligo-

forest for the CDC dataset, we checked if a power law distribution is a plausible fit

to mutation length frequency. We used the same procedure introduced by Clauset

et al. to test whether the mutation length follows a power law distribution [137].

Let lij be the length of mutation event from node si to node sj. Figure 4.4 shows

the cumulative distributions P (L ≥ l) of two candidate power law distribution fits

to the mutation length on a log-log plot. Table 4.2 shows two power law distri-

bution function fits to mutation length, one in the range [1,∞], and one in the

range [1, 43]. The first power law distribution holds only for the mutation events

with length l ≥ 8. Among all 2562 mutation events represented by edges in the

spoligoforest, only 263 of them, which constitute 10.27% of all mutation events, are

of length l ≥ 8. Therefore, power law distribution does not fit most of the observed

mutation events. Moreover, based on the Kolmogorov-Smirnov test, the p-value of

0.0020 is smaller than 0.1, which suggests that this power law distribution is not a

plausible fit to mutation length.

The second power law distribution fit in the range [1, 43] has the probability

mass function of the form used in Reyes et al. to fit the Zipf distribution [89]:

P2(L = l) =
l−α

43∑
i=1

i−α

.

The resulting p-value of the distribution based on the Kolmogorov-Smirnov test is 0,

and the second power law distribution is also not a plausible fit to mutation length.
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Figure 4.4: Mutation length frequency does not follow a power law dis-
tribution. The Kolmogorov-Smirnov test indicates that both
power law distributions do not hold.

Therefore, mutation length does not follow a power law distribution, in contrast to

the results in Zipf model built by Reyes et al. On the other hand, it is still accurate

to claim that observed mutation patterns involve high numbers of short spacer

deletions and small numbers of long spacer deletions. This is because mutation

length depends on the number of contiguous spacers in the parent spoligotypes.

4.4.4 Number of mutations at each DR locus

We counted the number of mutations which result in deletion of each spacer

to identify variations of the mutation rates in the DR region. Figure 4.5 shows the

number of mutation events in which a spacer of each DR locus is deleted. Based

on this figure, the number of deletions for each spacer follows a spatially bimodal

distribution, and the modes are spacer 13 and spacer 40. We call these DVR regions

hotspots, or sites of increased observed variability. Spacer 34 is the change point in

the bimodal distribution. This is due to lack of spacer 34 in the DR region in most

MTBC strains. In fact, out of 2841 spoligotypes in the CDC dataset, only 94 of

them, which constitute 3.31% of all spoligotypes, have spacer 34 present in the DR
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region. Out of 9336 MTBC strains determined by spoligotype and 12-loci MIRU

patterns in the dataset, only 192 of them, which constitute 2.06% of all MTBC

strains, have spacer 34 present in the DR region. Therefore, the mutation rate is

lowest at spacer 34 due to absence of spacer 34 in most MTBC strains in the CDC

dataset.

Figure 4.6 shows the CDC spoligoforest colored by presence of spacer 34. The

spoligoforest is dominated by nodes in gray, which denote the spoligotypes with

spacer 34 absent, and the nodes in blue, representing the spoligotypes with spacer 34

present, are very few. This suggests that spacer 34 have been irreversibly deleted in

the early stages of DR evolution and they can not mutate further after being deleted.

Two out of three principal genetic groups defined by Sreevatsan et al., PGG2 and

PGG3, lack spacers 33 to 36, which is concordant with this observation [139]. In

addition, 1971 spoligotypes out of 2841 in the CDC dataset are labeled with Euro-

American lineage, which is characterized by the deletion of spacers 33-36 [4,45]. This

bimodal separation of DR loci leads to accumulation of shorter deletions among

mutation events, rather than observing longer deletions, which explains why the

power law distribution is actually not a plausible fit to mutation length.

4.4.5 Alternative models for mutation length frequency

We showed earlier that a power law distribution is not a plausible fit to mu-

tation length frequency. Looking at the number of mutations at each spacer shown

in Figure 4.5, we can see that the mutation length depends on the starting point

of the mutation. Based on this observation, we built two alternative models for

mutation length frequency: Starting Point Model (SPM) and Longest Block Model

(LBM). SPM conditions the mutation length on the starting point of the mutation,

and fits power law distributions to mutation length frequency. LBM conditions the

mutation length on the length of longest block of 1’s, or present spacers, beyond the

starting point of mutation on each mutated spoligotype. In this section, we describe

both models in detail and show that they are plausibly good fits to mutation length

frequency.
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Figure 4.5: Number of deletions at contiguous DR loci follows a spa-
tially bimodal distribution. The two modes are spacer 13 and
spacer 40, which are hotspots. The change point is spacer 34.

Table 4.3: Possible start and end point regions of mutation events. The
table shows that a mutation event can start and end either in
region 1 including spacers [1, 34], leading to Type I mutation
event, or it can start and end in region 2 including spacers [35,
43], leading to Type II mutation event.

Start End Possible?

[1, 34] [1, 34] !

[1, 34] [35, 43] #

[35, 43] [1, 34] #

[35, 43] [35, 43] !

4.4.5.1 Starting Point Model (SPM)

The number of mutations follows a spatially bimodal distribution as shown in

Figure 4.5, and spacer 34 is the change point of this distribution with the fewest

number of mutations. We relax this assumption and separate the spacers into two

regions: region 1 including spacers [1,34], and region 2 including spacers [35,43].

Without loss of generality, we assume that a mutation event starts at a lower-

indexed spacer and ends at a higher-indexed spacer. Table 4.3 shows all start and
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Figure 4.6: The spoligoforest of the CDC dataset colored by the pres-
ence of spacer 34. Gray nodes which represent spoligotypes
with spacer 34 absent dominate the spoligoforest, compared
to the blue nodes which represent spoligotypes with spacer
34 present. This is because spacer 34 has been deleted irre-
versibly in most of the spoligotypes earlier in the DR evolu-
tion, thus can not mutate further.

end point combinations of mutation events, and whether they are possible or not.

According to the table, both start and end points of a mutation event have to be in

the same spacer region, either in [1,34], or in [35,43]. Therefore, no mutation event

can result in deletion of spacers in both regions. We name mutation events which

start and end at region 1 in the range [1,34] as Type I mutation event, and mutation

events which start and end at region 2 in the range [35,43] as Type II mutation

event.
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Figure 4.7: The number of mutations of length L = l which start at
spacer S = s. For each starting point except 34 and 43,
mutation length frequency follows a power law distribution,
as verified by a goodness-of-fit test. For starting points 34
and 43, the only possible mutation length is 1.

P (L = l|S = s) =



l−αs

35−s∑
i=1

i−αs

, s ∈ [1, 33]

l−αs

44−s∑
i=1

i−αs

, s ∈ [35, 42]

1, s ∈ {34, 43}, l = 1.

(4.1)

Let variable L represent the mutation length, and variable S represent the

starting point of mutation. Figure 4.7 shows the number of mutations of length

L = l which start at spacer S = s. Notice that, at each starting point except

spacers 34 and 43, the mutation length frequency follows a power law distribution,

as verified by goodness-of-fit test. Using maximum likelihood estimation, we verified

that the mutation length frequency follows a power law distribution with a unique
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Table 4.4: Candidate models for mutation length frequency distribution
and their goodness-of-fit test results based on Kolmogorov-
Smirnov test. The p-value for both SPM and LBM is 1, which
suggests that both models estimate the mutation length fre-
quency distribution accurately.

Model KS-value p-value Support

SPM 0.0406 1 Good
LBM 0.0116 1 Good

power law exponent for each starting point S = s ∈ [1, 33]∪[35, 42]. At the boundary

starting spacers 34 and 43, since the mutation event can occur in one of the two

regions, the only possible mutation length is 1. These observations lead to the SPM

described in Equation (4.1), where αs is the exponent of power law distribution for

starting point s. The αs values are estimated from the CDC data using maximum

likelihood method to compute the P (L = l|S = s) values. In order to find the

mutation length distribution, P (L = l) values are calculated as follows:

P (L = l) =
43∑
s=1

P (L = l|S = s) P (S = s) (4.2)

where P (S = s) is calculated as follows. For each spoligotype in the dataset, present

spacers are found and added to the total count for each spacer. Then, P (S = s) is

the ratio of the number of spoligotypes with spacer s present to the total number

of spacers present in all spoligotypes. Note that P (S = s) values are derived from

the spoligotype signatures of strains, without the need to find the mutation history

of spoligotypes using MakeSpoligoforest() algorithm.

Given P (L = l) values calculated using Equation (4.2), Figure 4.8 shows the

cumulative distribution P (L ≥ l) for the SPM on a log-log plot. In order to test the

goodness-of-fit of SPM, we adapted the power law validation procedure by Clauset

et al. to this model. Table 4.4 shows that the p-value for SPM is 1, which is greater

than 0.1, which suggests that SPM is a plausible model for the mutation length

frequency distribution.
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Figure 4.8: Cumulative distribution P (L ≥ l) of SPM based on the CDC
dataset. SPM is a good model for mutation length frequency
distribution. The goodness-of-fit test returns a p-value of 1,
which verifies the accuracy of the model.

Figure 4.9: Given the starting point of mutation on a spoligotype, the
contiguous block of spacers beyond the starting point can be
deleted in a mutation event. In the example above, given that
the mutation starts at spacer s, the length of the mutation
can be at most lmax.

P (L = l|L ≤ lmax) =


l−αlmax

lmax∑
i=1

i−αlmax

, lmax > 1,P (L ≤ lmax) 6= 0

1, lmax = l = 1.

(4.3)
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4.4.5.2 Longest Block Model (LBM)

According to the contiguous deletion assumption, a block of contiguous spacers

can be deleted in a mutation event. Therefore, given the starting point of a mutation

on a spoligotype, the number of spacers that can be deleted is limited by the number

of contiguous spacers beyond the starting point. Let L represent the mutation

length, and let lmax be the upper bound on the mutation length, given the starting

point of the mutation on a spoligotype. Figure 4.9 shows a spoligotype with present

spacers in gray, and absent spacers in white. If the starting point of mutation is s,

then the mutation length can be at most lmax. Based on this observation, in Figure

4.10, we plotted the number of mutations of length L = l, given the maximum

possible length lmax. In the plot, at each lmax value except lmax = 1, the mutation

length frequency follows a power law distribution if P (L ≤ lmax) 6= 0, also verified

by goodness-of-fit test. We verified using maximum likelihood estimation that the

mutation length frequency follows a power law distribution with a unique power law

exponent for each lmax > 1, given that P (L ≤ lmax) 6= 0. At the boundary case

lmax = 1, the mutation can only be of length 1. These observations are combined

in the LBM described in Equation (4.3), where αlmax is the exponent of power law

distribution for maximum length lmax. The αlmax values are estimated from the

CDC data using maximum likelihood method, and P (L = l|L ≤ lmax) values are

found. Mutation length distribution is derived from this probability as follows:

P (L = l) =
43∑

lmax=1

P (L = l|L ≤ lmax) P (L ≤ lmax) (4.4)

where P (L ≤ lmax) values are calculated from the mutation history of spoligotypes

using starting point of each mutation and thereby the length of the longest block of

contiguous spacers for each mutation event.

Given P (L = l) values calculated using Equation (4.4), Figure 4.11 shows the

cumulative distribution P (L ≥ l) for LBM on a log-log plot. We tested the goodness-

of-fit of LBM using the test we adapted from power law validation procedure by

Clauset et al. As shown in Table 4.4, the p-value of the test for LBM is 1, which

is greater than 0.1. This suggests that LBM is a plausible model for the mutation
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Figure 4.10: The number of mutations of length L = l, given that the
longest block of contiguous spacers is of length L = lmax. If
there exists at least one block of contiguous spacers of length
lmax > 1, then, given the upper bound lmax, the mutation
length frequency follows power law distribution.

Table 4.5: Goodness-of-fit test results of SPM and LBM for the dataset
from Institut Pasteur de Guadeloupe, based on Kolmogorov-
Smirnov test. The p-value for SPM and LBM is 1, which
suggests that both models estimate the mutation length fre-
quency distribution accurately. This shows that SPM and
LBM are robust and they hold for different strain datasets.

Model KS-value p-value Support

SPM 0.0482 1 Good
LBM 0.0381 1 Good

length frequency distribution.

In both SPM and LBM, we used an extra parameter to estimate the muta-

tion length frequency distribution. To test if the models are robust, we applied

SPM and LBM to another dataset from Institut Pasteur de Guadeloupe which is

partially listed in multimarker SITVITWEB database [140]. This dataset has 2158

strains uniquely identified by (spoligotype, MIRU) pairs, and there are 699 unique

spoligotypes. We ran the MakeSpoligoforest() algorithm on this dataset, and fit
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Figure 4.11: Cumulative distribution P (L ≥ l) of LBM based on the
CDC dataset. LBM is a good model for mutation length
frequency distribution. The goodness-of-fit test returns a
p-value of 1, which verifies the accuracy of the model.

(a) SPM: Starting Point Model (b) LBM: Longest Block Model

Figure 4.12: Cumulative distribution P (L ≥ l) for SPM and LBM based
on the Institut Pasteur de Guadeloupe dataset. SPM and
LBM fits the mutation length frequency distribution. This
shows that these models are robust and they hold for differ-
ent strain datasets.
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SPM and LBM to the mutation length frequency distribution. Figure 4.12a and

4.12b shows the cumulative distribution P (L ≥ l) for SPM and LBM respectively.

The goodness-of-fit test results for both models are summarized in Table 4.5. The

p-value for both models is 1, which is greater than 0.1, and this suggests that SPM

and LBM are plausibly good models for the mutation length frequency distribution.

Therefore, SPM and LBM are robust and they accurately estimate the mutation

length frequency distribution independent of the dataset examined.

4.5 Discussion and Conclusion

We developed a new mutation model of MTBC spoligotype evolution using

the variations in the DR region and MIRU patterns to disambiguate the ancestors

of a spoligotype. Based on the contiguous deletion assumption and no homoplasy,

and using three distance measures, we generated the most parsimonious forest of

spoligotypes. The resulting spoligoforest depicts a putative history of mutation

events in the DR region. Given the spoligotype mutations, we analyzed the biological

network of spoligotypes in terms of both network topology and number of mutations

at each DR locus.

We compared our mutation model based on spoligotypes and MIRU patterns

with its counterparts using spoligotyping only, MIRU typing only and with Zipf

model [89]. The mutation model which incorporates both biomarkers results in

the most parsimonious spoligoforest and maximizes within-lineage mutation events.

The comparison showed that segregation accuracy values are high in all four models

with no statistically significant difference in the results. Therefore, spoligoforests

created using only spoligotypes and the Zipf model are very similar to spoligoforests

determined by the additional independent biomarker MIRU-VNTR. This validates

the spoligoforest algorithms based only on spoligotypes, showing that spoligotype

only algorithms can be used to generate the spoligoforest when MIRU patterns are

not present.

The number of descendants of a spoligotype is equivalent to the outdegree of

the corresponding node in the spoligoforest. We tested and verified the hypothesis

that the number of descendant spoligotypes follows a power law distribution. This
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is due to the fact that the higher the copy number of spoligotype, that is, the

more spacers present in the DR region, the more spoligotypes can descend from it.

In addition, the assumption of no homoplasy favors genetic diversity rather than

convergent evolution.

We tested and verified that mutation length of spoligotype deletions in a mu-

tation event does not follow a power law distribution, as opposed to the Zipf model

for mutation of spoligotypes proposed by Reyes et al. [89]. However, it is still ac-

curate to state that mutations in the DR region rarely involve long deletions and

frequently involve short deletions.

We calculated the number of mutation events which resulted in deletion of

spacer at each DR locus. The number of mutations at consecutive DR loci showed a

pattern of spatially bimodal distribution. The two modes are spacer 13 and spacer

40, which are hotspots of variations in the DR region. The change point in the

bimodal distribution is spacer 34. This is due to absence of spacer 34 in a large

number of MTBC strains, rather than low mutation rate at DVR34, because this

spacer has been deleted irreversibly at the beginning of DR evolution and it can

not mutate further after being deleted. Two out of three principal genetic groups

defined by Sreevatsan et al. and MTBC strains of Euro-American lineage lack

spacers 33-36, which supports the claim that low number of mutations in DVR34 is

due to lack of spacer 34 in most MTBC strains in the CDC dataset [4, 139]. Since

most of the deletion events occur either on spacers 1-34, or spacers 35-43, resulting

in accumulation of shorter deletions, longer deletions are not observed. Therefore,

this bimodal distribution explains why mutation length does not follow a power

law distribution. Note however that a block of contiguous spacers in the 43-spacer

format may not be contiguous in the 104-spacer format, which is a superset of 43-

spacer format [141]. Therefore, 43-spacer representation can be renumbered on the

104-spacer format for further differentiation of spoligotypes to build a more detailed

mutation history of the DR region. Spacer duplications can also intervene a block of

contiguous spacers during the microevolution of genetically related group of strains,

and a deletion involving a duplicated spacer can not be captured by the 43-spacer

format [142].
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Based on the spatially bimodal distribution of mutation events in the DR

region, we built two alternative models for mutation length frequency. The SPM

conditions the mutation length on the starting point of the mutation, and the LBM

conditions the mutation length on the length of the longest block of contiguous

spacers beyond the starting point of mutation. Both SPM and LBM estimate the

mutation length frequency distribution accurately, as opposed to Zipf model sug-

gested in earlier studies. We also tested these models on another dataset from

Institut Pasteur de Guadeloupe, and verified that both models are robust and hold

for different strain datasets.

Future work will involve analysis of other topological attributes of the spoligo-

forest, extension of the mutation model to use other biomarkers, and interpretation

of clades grouped closely in the spoligoforest. The mutation model can be extended

to include more biomarkers, e.g. RFLP, with corresponding distance measures for

the additional biomarkers to be used in the algorithm which generates the spoligo-

forest. Analysis of connected components in the spoligoforest can give more insight

into segregation of major lineages or sublineages. In addition, each tree or subtree

in the spoligoforest can be a group of genetically related MTBC strains not classi-

fied as a separate clade earlier. This mutation model can also be extended to other

organisms genotyped by CRISPR profiles.



CHAPTER 5

HOST-PATHOGEN ASSOCIATION ANALYSIS OF

TUBERCULOSIS PATIENTS VIA UNIFIED

BICLUSTERING FRAMEWORK

5.1 Introduction

Tuberculosis (TB) is an airborne disease which is a leading cause of death

worldwide. According to World Health Organization, one third of the human popu-

lation is infected either latently or actively with TB [1]. Mycobacterium tuberculosis

complex (MTBC) is the set of species which causes TB. MTBC isolates from TB

patients are genotyped using multiple biomarkers for tracking TB transmission, TB

control, and examining host-pathogen relationships.

Earlier studies have found associations between TB patients and the MTBC

strains which infected them. Hirsh et al. showed that a TB patient’s place of birth

can be used to predict the geographic origin of the MTBC isolate [31]. Gagneux

et al. defined the population structure of MTBC strains using six phylogeographic

lineages and showed that these lineages are adapted to particular human populations

defined by place of birth or risk factor [4]. Visual inspection via host-pathogen maps

enable making inferences from patient data and strain lineages [143]. Although

names of phylogeographic lineages imply an association between MTBC isolates and

patients’ place of birth, none of these studies combine genetic proximity between

MTBC strains and spatial proximity between TB patients together. In this study,

in addition to the distribution of MTBC isolates to their host’s country of birth,

we add genetic proximity, spatial proximity and time into domain knowledge of

host-pathogen association analysis.

Multiple sources of information can be incorporated into data analysis via

data fusion [144]. Recently, there has been considerable work on genomic data

* Portions of this chapter previously appeared as: C. Ozcaglar, B. Yener, and K. P. Bennett,
Host-pathogen association analysis of tuberculosis patients via Unified Biclustering Framework,
Tech. Rep. 12-05, Department of Computer Science, Rensselaer Polytechnic Institute, 2012.
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fusion [145–147]. In the TB context, Ozcaglar et al. built the tensor clustering

framework (TCF) to cluster MTBC strains using multiple biomarkers simultane-

ously through genomic data fusion [23]. Genomic and phenomic data sources are

also combined in earlier studies [148] via genome-phenome data fusion. However,

there is no significant work on genome-phenome interactions of MTBC isolates and

TB patients.

In this study, we present host-pathogen associations of tuberculosis by in-

corporating genetic proximity between MTBC strains, spatial proximity between

TB patients, and time into domain knowledge via Unified Biclustering Framework

(UBF). We simultaneously factorize multiple sources of information in various forms

and obtain biclusters which represent host-pathogen pairs, while keeping pathogens

genetically close in order to estimate most likely mutation events, and keeping hosts

spatially close in order to estimate most likely transmission events. Based on factor

matrices of hosts and pathogens, we generate the feature pattern similarity matrix

of host-pathogen pairs, and find density-invariant biclusters. Finally, we select sta-

tistically significant biclusters among them and find the most stable host-pathogen

associations. We also find host-pathogen associations within each major lineage.

We evaluate biological relevance of statistically significant biclusters, confirm known

host-pathogen associations, and propose new ones.

5.2 Background

In order to find relationships between MTBC isolates and TB patients, we

uniquely identified them by their characteristics. We represented MTBC strains

with a commonly used biomarker, spoligotype, and represented each patient with

their country of birth. Finally, we stated the host-pathogen association analysis as

a biclustering problem. Next, we give a brief background on spoligotyping, biclus-

tering, and explain host-pathogen association analysis as a biclustering problem.

5.2.1 Spoligotyping

Spoligotyping is a DNA fingerprinting method of MTBC which exploits the

polymorphism in the DR region consisting of 36 bp of direct repeats separated by 36
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to 41 bp of spacers [17]. A spoligotype consists of 43 spacers, and it is represented as

a 43-bit binary vector, where zeros represent absence of spacers and ones represent

presence of spacers. Mutations in the DR region can result in loss of spacers, but not

gain. This rule of irreversible mutation of spoligotypes is also known as contiguous

deletion assumption [32,33].

5.2.2 Biclustering

Biclustering is a class of clustering algorithms which perform simultaneous

clustering of rows and columns of a matrix. The term was first coined by Cheng

and Church for gene expression data analysis [49]. Following them, many biclus-

tering algorithms motivated mostly by bioinformatics applications are developed.

These biclustering algorithms include spectral biclustering algorithm by Dhillon et

al. [54] and Kluger et al. [55], Statistical-Algorithmic Method for Bicluster Analysis

(SAMBA) by Tanay et al. [58], Coupled Two-Way Clustering (CTWC) by Getz

et al. [52], Binary Inclusion-Maximal biclustering algorithm (BiMax) by Prelic et

al. [60], and densely-connected biclustering (DECOB) by Colak et al. [64]. A great

survey by Madeira et al. details biclustering and existing biclustering algorithms

for biological data analysis [48].

5.2.3 Host-pathogen association analysis: a biclustering problem

Biclustering was initially motivated by gene expression data analysis in order

to group genes into subsets of genes which are coexpressed under certain subsets of

conditions. This is equivalent to finding submatrices in a gene expression matrix

such that the submatrix entries follows a cohesive pattern under investigation. In

the TB context, the genes of microarray data maps to spoligotypes of MTBC strains,

and the conditions of microarray data maps to country of birth of TB patients. The

resulting host-pathogen matrix of tuberculosis expresses the association level of a

spoligotype to a country.

In the case where the original host-pathogen matrix is extended or concate-

nated with other matrices via data fusion, we use feature patterns for spoligotypes

and countries. We first extract feature patterns for each spoligotype of MTBC

strains and for each country of birth for TB patients. The association level of
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a spoligotype and a country is calculated as the cosine similarity of their feature

pattern vectors. This final form of host-pathogen matrix of tuberculosis expresses

association level of host-pathogen pairs, and is in the correct form to be analyzed

via biclustering.

In the next section, we present the methods used for host-pathogen association

analysis. We first give details about the patient dataset. Then, we present the

calculation of genetic proximity matrix and spatial proximity matrix used in data

fusion. Finally, we present the steps of Unified Biclustering Framework (UBF).

5.3 Methods

5.3.1 The dataset

The NYC dataset consists of 4876 patients in the United States diagnosed

between 2001 and 2007. The spoligotype of MTBC strains and their host’s country

of birth are available in the dataset, along with the date of diagnosis. There are

858 unique spoligotypes in the original dataset. MTBC strains are labeled by ma-

jor lineages based on their spoligotypes using Conformal Bayesian Network (CBN)

model [20], and by KBBN sublineages using the Knowledge-based Bayesian Network

(KBBN) model [21]. We refer to spoligotypes using shared type numbers, or SIT

numbers using SITVITWEB database [140]. If the spoligotype is not assigned to an

ST number by SITVITWEB, then we assign a unique UST number, where U denotes

unknown ST. We first filter this data such that there are at least 2 patients from

each country, and at least two patients infected with each strain. After filtering the

dataset, there remains 4301 patients, 311 spoligotypes, and 104 countries. Using this

filtered dataset, we construct the host-pathogen tensor (HPT) of the form Spoligo-

types × Countries × Time. The final HPT is denoted as X ∈ R(I=311)×(J=104)×(K=7).

The host-pathogen tensor (HPT) is shown in Figure 5.1.

5.3.2 Distance matrices

In the host-pathogen tensor, the first mode represents pathogen attributes, in

this case spoligotypes. Genetic proximity of spoligotypes can be found using genetic

distance measures. Hosts with genetically close spoligotypes are more likely to be
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Figure 5.1: Host-pathogen tensor (HPT). The first mode represents
spoligotypes, the second mode represents countries, and the
third mode represents time. This HPT is of the form Spolig-
otypes × Countries × Time.

involved in the same mutation event. Similarly, the second mode represents host

attributes, in this case country of birth. Proximity of countries can be found based

on neighbourhood. Patients from close countries based on the proximity values are

more likely to be involved in the same transmission event.

5.3.2.1 Genetic proximity matrix

Given 311 distinct spoligotypes, we define a genetic proximity measure between

them. Mutation of spoligotypes is based on the Contiguous Deletion Assumption

(CDA), which states that one or more contiguous spacers can be deleted in a muta-

tion event, but not gained. Let si represent spoligotype i, and let si → sj represent

the mutation of spoligotype si into spoligotype sj. Then, we define the CDA matrix,

which summarizes contiguous deletion assumption, as follows:

CDA(si, sj) =

true, if si → sj or sj → si

false, otherwise.

Let H(si, sj) be the Hamming distance between spoligotypes si and sj, as

defined in [32]:

H (si, sj) =
43∑
r=1

| sir − sjr |
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where sir represents the value of r − th spacer of spoligotype si. Then, we define

the genetic proximity matrix PG as follows:

PG(si, sj) =



1

1 +H(si, sj)
, if i 6= j, CDA(si, sj), H(si, sj) ≤ 10

1, if i = j

0, otherwise.

Genetic proximity matrix PG has values inversely proportional to the Hamming

distance between two spoligotypes, as long as the Hamming distance between them

is at most 10. For spoligotype pairs with H(si, sj) > 10, the genetic proximity is set

to zero. As a result, genetic proximity matrix reflects the likelihood of two different

pathogens being involved in the same mutation event.

5.3.2.2 Spatial proximity matrix

Given 104 countries, we first define the Country Neighbourhood Matrix (CNM).

Given two countries Ci and Cj, the CNM is defined as follows:

CNM(Ci,Cj) =

1, if Ci and Cj are neighbours

0, otherwise.

Let L(Ci,Cj) be the length of shortest path from Ci to Cj based on Dijkstra’s

shortest path algorithm on CNM [149]. Then, we define the spatial proximity matrix

PS as follows:

PS(Ci,Cj) =



1

1 + L(Ci,Cj)
, if i 6= j, L(Ci,Cj) ≤ 3

1, if i = j

0, otherwise.

Spatial proximity matrix PS has values inversely proportional to the length

of shortest path between two countries, as long as the shortest-path length is at

most 3. For country pairs with shortest-path length L(Ci,Cj) > 3, the proximity
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Figure 5.2: Unified Biclustering Framework (UBF). In the first step, the
data is generated as a matrix, a tensor, a coupled matrix-
matrix, or a coupled matrix-tensor. In the second step, the
data in various forms are factorized. In the third step, feature
pattern similarity matrix is generated using the factor ma-
trices of the decomposition. In the fourth step, we bicluster
data points using density-invariant biclustering algorithm. In
the final step, we find the most stable biclusters using average
best-match score.

between two countries is set to zero. As a result, spatial proximity matrix reflects

the likelihood of patients from two countries being involved in the same transmission

event.

5.3.3 UBF: Unified Biclustering Framework

In order to analyze host-pathogen associations using various forms of the raw

dataset, we propose the Unified Biclustering Framework (UBF). Based on this frame-

work, we generate the data in the first step, which can be a matrix, a tensor, a cou-

pled matrix-matrix, or a coupled matrix-tensor. In the second step, we decompose

the dataset according to its form. In the third step, we generate the feature pattern
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similarity matrix. In the fourth step, we run the density-invariant biclustering (DIB)

algorithm on the feature pattern similarity matrix. Finally, we find statistically sig-

nificant biclusters and evaluate their biological relevance. Figure 5.2 shows the steps

of UBF. The software for UBF is available at http://sourceforge.net/projects/ubf/.

Next, we give the details of each step.

5.3.3.1 Data generation

The host-pathogen tensor X ∈ RI×J×K can be coupled with genetic proximity

matrix Y ∈ RI×M and spatial proximity matrix Z ∈ RJ×N . This flexibility leads

to different data configurations which allows simultaneous factorization of different

data blocks. Possible data configurations are shown in Figure 5.3. In data config-

uration 1, the host-pathogen tensor X is summed and contracted along the time

mode, and X̂ ∈ RI×J is obtained and used without factorization. In data configura-

tion 2, the original host-pathogen tensor X is used. In data configuration 3, genetic

proximity matrix Y is coupled with the host-pathogen tensor X in the first mode,

incorporating the genetic distance into domain knowledge. In data configuration 4,

spatial proximity matrix Z is coupled with the host-pathogen tensor X in the second

mode, incorporating the spatial distance into domain knowledge. In data configura-

tion 5, genetic proximity matrix Y and spatial proximity matrix Z are coupled with

the host-pathogen tensor X in the first and second mode respectively, incorporat-

ing both the genetic distance and spatial distance into domain knowledge. In data

configuration 6, the host-pathogen tensor X is contracted and summed along the

time mode, keeping the genetic proximity matrix Y and spatial proximity matrix Z

coupled with the contracted host-pathogen tensor, which is now the matrix X̂. We

use all six configurations to find biclusters to associate spoligotypes and country of

birth of tuberculosis patients, and test the effect of distance measures and time on

detected groups.

5.3.3.2 Data factorization

In the second step of UBF, we factorize the dataset according to its form. If

the data is a matrix, we use it as is. If it is a tensor, we use tensor decomposition

methods, PARAFAC and Tucker3, and find the factor matrices for each mode.

http://sourceforge.net/projects/ubf/
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Figure 5.3: Data configurations. The mode name S represents spoligo-
types, C represents countries, and T represents time in years.
The first configuration is a raw Spoligotypes × Countries
matrix decomposed using Matrix Biclustering Framework
(MBF) as part of UBF. The second data configuration in-
cludes time information as the third mode of the tensor de-
composed using Tensor Biclustering Framework (TBF) as
part of UBF. Third, fourth and fifth data configurations
are the results of concatenating the genetic proximity ma-
trix, spatial proximity matrix, and both respectively, to the
host-pathogen tensor. They are decomposed using Coupled
Matrix-Tensor Biclustering Framework (CMTBF) as part of
UBF. Finally, in data configuration 6, we exclude time in-
formation and decompose the resulting data using coupled
matrix-matrix biclustering framework (CMMBF) as part of
UBF.
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When the dataset is a coupled matrix-matrix or matrix-tensor, then we need to

simultaneously factorize multiple matrices and/or tensors. We adopt the alternating

least squares approach to solve coupled data factorizations. Next, we briefly outline

the algorithms we use for coupled matrix-matrix factorization and coupled matrix-

tensor factorization.

Coupled matrix-matrix factorization (CMMF): Coupled matrices are simul-

taneously factorized using the CMMF ALS algorithm, which we outline next.

CMMF ALS: The host-pathogen tensor contracted along the time mode becomes

the matrix X̂ ∈ RI×J . Genetic proximity matrix Y ∈ RI×I and spatial proximity

matrix Z ∈ RJ×J are approximated as in the system of equations (5.1).

X̂ ≈ AB′

Y ≈ AV′

Z ≈ BW′ . (5.1)

We want to minimize the following loss function L1, the sum of Frobenius norm of

residuals for each data block:

L1 = ||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F . (5.2)

To minimize L1, we first initialize the factor matrices A, B, V, W using truncated

SVD, and then alternately minimize the loss function by fixing one of them at a

time.
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min
A,B,V ,W

||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F

min
A,B,V ,W

tr
((

X̂−AB′
)(

X̂′ −BA′
))

+ tr ((Y −AV′) (Y′ −VA′))

+ tr ((Z−BW′) (Z′ −WB′))

min
A,B,V ,W

tr
(
X̂X̂′

)
− 2tr

(
BA′X̂

)
+ tr (AB′BA′) + tr (YY′)− 2tr (VA′Y) +

tr (AV′VA′) + tr (ZZ′)− 2tr (WB′Z) + tr (BW′WB′)

min
A,B,V ,W

− 2tr
(
BA′X̂

)
− 2tr (VA′Y)− 2tr (WB′Z) + tr (AB′BA′) + tr (AV′VA′)

+ tr (BW′WB′) (5.3)

Therefore, the objective function (5.3) is:

L = −2tr
(
BA′X̂

)
− 2tr (VA′Y)− 2tr (WB′Z) + tr (AB′BA′) + tr (AV′VA′)

+tr (BW′WB′) .

(5.4)

To minimize the loss function for A, B, V, W after fixing other factor matri-

ces, we take the derivative of objective function L in equation (5.4), and set it to

zero for each factor matrix, which gives the following update rules of matrices in

CMMF ALS:

Update for A:

∂L

∂A
= −2X̂B− 2YV + 2AB′B + 2AV′V = 0

=⇒AB′B + AV′V = X̂B + YV

A =
(
X̂B + YV

)
\ (B′B + V′V)
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Update for B:

∂L

∂B
= −2X̂′A− 2ZW + 2BA′A + 2BW′W = 0

=⇒BA′A + BW′W = X̂′A + ZW

B =
(
X̂′A + ZW

)
\ (A′A + W′W)

Update for V:

∂L

∂V
= −2Y′A + 2VA′A = 0

=⇒VA′A = Y′A

V = (Y′A) \ (A′A)

Update for W:

∂L

∂W
= −2Z′B + 2WB′B = 0

=⇒WB′B = Z′B

W = (Z′B) \ (B′B)

where \ represents right matrix division. The complete CMMF ALS procedure is

summarized in Algorithm 8. In this algorithm, the function svd mmf(X̂, Y, Z)

initializes the factor matrices A, B, V, W using truncated SVD with min(J ,M ,N)

components.

Coupled matrix-tensor factorization (CMTF): Coupled matrices and ten-

sors can be simultaneously factorized. For this purpose, we used modifications of

PARAFAC and Tucker3 methods. CMTF PARAFAC ALS decomposes the tensor

using PARAFAC while factorizing the coupled matrices simultaneously. CMTF PA-

RAFAC ALS algorithm and its variations exist in the literature. We built another

algorithm, extension of Tucker3 to coupled matrix-tensor factorization. CMTF Tuc-

ker ALS algorithm decomposes the tensor using Tucker3, while simultaneously fac-

torizing the coupled matrices. In the next section, we give the details of these
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Algorithm 8 CMMF ALS(X̂ ∈ RI×J,Y ∈ RI×M,Z ∈ RJ×N)

1: [A, B, V, W] = svd mmf(X̂, Y, Z)
2: loss(current) = ||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F
3: loss(prev) = loss(current)
4: count = 0
5: while ((count == 0) || (0 < count ≤ 103 && |loss(current)−loss(prev)|

loss(prev)
> 10−8)) do

6: count+ +
7: // Solve for A

8: A =
(
X̂B + YV

)
\ (B′B + V′V)

9: // Solve for B

10: B =
(
X̂′A + ZW

)
\ (A′A + W′W)

11: // Solve for V
12: V = (Y′A) \ (A′A)
13: // Solve for W
14: W = (Z′B) \ (B′B)
15: loss(prev) = loss(current)
16: loss(current) = ||X̂−AB′||2F + ||Y −AV′||2F + ||Z−BW′||2F
17: end while

algorithms.

CMTF PARAFAC ALS: Given the host-pathogen tensor X ∈ RI×J×K coupled

with genetic proximity matrix Y ∈ RI×I and spatial proximity matrix Z ∈ RJ×J ,

we approximate them as follows:

X(1) ≈ A (C�B)′

Y ≈ AV′

Z ≈ BW′ (5.5)

where � denotes the Khatri-Rao product. We want to minimize the following loss

function which is the sum of squared Frobenius norm of residuals for each data

block:

L2 = ||X(1) −A (C�B)′ ||2F + ||Y −AV′||2F + ||Z−BW′||2F . (5.6)



106

CMTF PARAFAC ALS is also known as CMTF ALS algorithm in the liter-

ature, which is detailed in earlier studies [150]. Therefore, we skip the details of

the algorithm, and only focus on the update step for each factor matrix. Mini-

mization for A, B, C, V, W alternately returns the following updates at each step

of CMTF PARAFAC ALS:

Update for A:

min
A
||X(1) −A (C�B)′ ||2F + ||Y −AV′||2F

min
A
|| [X(1) Y]︸ ︷︷ ︸

T

−A
[
(C�B)′ V′

]︸ ︷︷ ︸
K

||2F

=⇒A = (TK′) / (KK′)

Update for B:

min
B
||X(2) −B (C�A)′ ||2F + ||Z−BW′||2F

min
B
|| [X(2) Z]︸ ︷︷ ︸

T

−B
[
(C�A)′ W′]︸ ︷︷ ︸

K

||2F

=⇒B = (TK′) / (KK′)

Update for C:

min
C
||X(3)︸︷︷︸

T

−C (B�A)′︸ ︷︷ ︸
K

||2F

=⇒C = (TK′) / (KK′)

Update for V:

min
V
||Y −AV′||2F

=⇒V = ((A′A) \ (A′Y))
′
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Update for W:

min
W
||Z−BW′||2F

=⇒W = ((B′B) \ (B′Z))
′

CMTF Tucker ALS: Next, we extend Tucker3 method to CMTF Tucker ALS for

coupled matrix-tensor decomposition. This algorithm comes with the flexibility of

factorizing the tensor using different number of components for each mode, while

simultaneously factorizing the coupled matrices. The host-pathogen tensor X ∈
RI×J×K , genetic proximity matrix Y ∈ RI×I and spatial proximity matrix Z ∈ RJ×J

are approximated as in the system of equations (5.7).

X(1) ≈ AG(1) (C′ ⊗B′)

Y ≈ AV′

Z ≈ BW′ (5.7)

where ⊗ denotes the Kronecker product. Note that in the Tucker3 model, the

factor matrices A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R are orthogonal. Then, tensor

X ∈ RI×J×K can be decomposed using a (P ,Q,R)-component Tucker3 model, while

simultaneously factorizing Y ∈ RI×I and Z ∈ RJ×J with the factor matrices of the

shared mode. We want to minimize the loss function L3 in Equation (5.8), which is

the sum of squared Frobenius norm of residuals for each data block.

L3 = ||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F + ||Z−BW′||2F . (5.8)

To minimize L3, we first initialize the factor matrices A, B, V, W using truncated

SVD, and then alternately minimize the loss function for one of the variables at

a time, while fixing the other variables. The following steps in Equation (5.9)

reformulate the minimization of the loss function.
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min
A
||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F

min
A
||
[
X(1) Y

]
−
[
AG(1) (C′ ⊗B′) AV′

]
||2F

min
A
||
[
X(1) Y

]
−

AA′X(1) (CC′ ⊗BB′)︸ ︷︷ ︸
M1

AV′

 ||2F
min
A
||
[
X(1) Y

]
− [AA′M1 AV′] ||2F

min
A

+ tr
(([

X(1) Y
]
− [AA′M1 AV′]

) ([
X(1) Y

]′ − [AA′M1 AV′]
′
))

min
A

+ tr
([

X(1) Y
] [

X(1) Y
]′)− 2tr

([
X(1) Y

]
[M′

1AA′ ; VA′]
)

+ tr ([AA′M1 AV′] [M1AA′ ; VA′])

min
A
− 2tr

([
X(1) Y

]
[M′

1AA′ ; VA′]
)

+ tr (AA′M1M
′
1AA′ + AV′VA′)

min
A
− 2tr

(
X(1)M

′
1AA′ + YVA′

)
+ tr (AA′M1M

′
1AA′ + AV′VA′)

min
A
− 2tr

(
X(1)M

′
1AA′

)
− 2tr (YVA′) + tr (AA′M1M

′
1AA′) + tr (AV′VA′)

min
A
− 2tr (M1M

′
1AA′)− 2tr (YY′AA′) + tr (A′M1M

′
1A) + tr (AA′YY′AA′)

min
A
− 2tr (A′M1M

′
1A)− 2tr (A′YY′A) + tr (A′M1M

′
1A) + tr (A′YY′A)

min
A
− tr (A′M1M

′
1A)− tr (A′YY′A) (5.9)

s.t. A′A = I

where M1 = X(1) (CC′ ⊗BB′). The Lagrangian of this function is:

LA = −tr (A′M1M
′
1A)− tr (A′YY′A) + tr (λ (A′A− I))

where λ are the Lagrangian multipliers for the orthogonality constraint A′A = I.

The derivative of LA with respect to A set to zero returns the following equation:
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∂LA
∂A

= −2M1M
′
1A− 2YY′A + λ (2A) = 0

=⇒ (M1M
′
1 + YY′) A = λA (5.10)

The optimal solution of (5.9) must satisfy Equation (5.10). Thus, A is composed of

first P largest eigenvectors of (M1M
′
1 + YY′). We denote it as follows:

A = EVD (M1M
′
1 + YY′,P ) . (5.11)

Similarly, for the second mode, we write the loss function L3 in Equation (5.8) by

matricizing the tensor along the second mode. Then, the objective function is:

min
B
− tr (B′M2M

′
2B)− tr (B′ZZ′B) (5.12)

s.t. B′B = I

where M2 = X(2) (CC′ ⊗AA′). The Lagrangian of this objective function is:

LB = −tr (B′M2M
′
2B)− tr (B′ZZ′B) + tr (λ (B′B− I))

where λ are the Lagrangian multipliers for the orthogonality constraint B′B = I.

The derivative of LB with respect to B set to zero returns the following equation:

∂LB
∂B

= −2M2M
′
2B− 2ZZ′B + λ (2B) = 0

=⇒ (M2M
′
2 + ZZ′) B = λB

which means that B is composed of first Q largest eigenvectors of (M2M
′
2 + ZZ′).

We denote it as follows:

B = EVD (M2M2
′ + ZZ′,Q) . (5.13)
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For the uncoupled third mode, we write the objective function L3 in Equation (5.8)

by matricizing the tensor along the third mode. The objective function is as follows:

min
C
− tr (C′M3M

′
3C) (5.14)

s.t. C′C = I

where M3 = X(3) (BB′ ⊗AA′). The Lagrangian of this function is:

LC = −tr (C′M3M
′
3C) + λ (tr (C′C− I)) .

The derivative of LC with respect to C set to zero returns the following equation:

∂LC
∂C

= −2M3M
′
3C + λ (2C) = 0

=⇒M3M
′
3C = λC

which means that C is composed of first R largest eigenvectors of M3M
′
3, or equiv-

alently, first R left singular vectors of M3. We denote it as follows:

C = SVD (M3,R) . (5.15)

The complete CMTF Tucker ALS procedure using these update rules is sum-

marized in Algorithm 9. Note that the function call hosvd Tucker(X, [P ,Q,R])

at the beginning of the algorithm initializes factor matrices via truncated SVD us-

ing P ,Q,R components respectively for each mode. The function unfoldall(X)

matricizes the tensor along each mode.

5.3.3.3 Feature pattern similarity matrix generation

We calculate the similarity of feature patterns of a spoligotype s and country

c by calculating cosine similarity between feature pattern vectors of them. This

is calculated in different ways for different forms of input data. If the input data

is a matrix, then the matrix itself is used as the feature pattern similarity matrix
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Algorithm 9 CMTF Tucker ALS(X ∈ RI×J×K,Y ∈ RI×M,Z ∈ RJ×N, [P ,Q,R])

1: [A, B, C, G] = hosvd Tucker(X, [P ,Q,R]);
2: V = ((A′A)\(A′Y))′

3: W = ((B′B)\(B′Z))′

4: [X(1), X(2), X(3)] = unfoldall(X)

5: [G(1), G(2), G(3)] = unfoldall(G)

6: loss(current) = ||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F + ||Z−BW′||2F
7: loss(prev) = loss(current)
8: count = 0
9: while ((count == 0) || (0 < count ≤ 103 && |loss(current)−loss(prev)|

loss(prev)
> 10−8)) do

10: count+ +
11: // Solve for A
12: M1 = X(1) (CC′ ⊗BB′)
13: A = EVD (M1M1

′ + YY′,P )
14: // Solve for B
15: M2 = X(2) (CC′ ⊗AA′)
16: B = EVD (M2M2

′ + ZZ′,Q)
17: // Solve for C
18: M3 = X(3) (BB′ ⊗AA′)
19: C = SVD (M3,R)
20: // Solve for V
21: V = ((A′A)\(A′Y))′

22: // Solve for W
23: W = ((B′B)\(B′Z))′

24: loss(prev) = loss(current)
25: loss(current) = ||X(1) −AG(1) (C′ ⊗B′) ||2F + ||Y −AV′||2F + ||Z−BW′||2F
26: end while

(FPSM). If the data is in tensor form, then FPSM is calculated for PARAFAC as

follows. Assume that R-component PARAFAC model on the data matrix returns

factor matrix A ∈ RI×R for the first mode and factor matrix B ∈ RJ×R for the

second mode. Then, we first normalize the rows of A and B, and calculate the

feature pattern similarity matrix FPSM as follows:

FPSMij =


Ai. B′j.

||Ai.|| ||Bj.||
, if N(i, j) > 0

0, otherwise.

(5.16)

where N(i, j) represents the number of patients from country j infected with strain

i, and Ai. represents the i-th row of A. This calculation is equivalent to cosine
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similarity of feature vector of i-th sample of A and feature vector of j-th sample of B,

only if there is at least one patient from country j infected with strain i. Calculation

of feature pattern matrix after applying Tucker3 model is slightly different. Assume

that (P ,Q,R)-component Tucker3 model on the data matrix returns factor matrix

A ∈ RI×P for the first mode, factor matrix B ∈ RJ×Q for the second mode, and the

core tensor G ∈ RP×Q×R. First, we contract and sum the core tensor G along the

third mode and obtain Ĝ matrix to calculate the level of interaction between the

factors of A and B. We normalize the rows of AĜ and B. Finally, we calculate the

feature pattern similarity matrix as the cosine similarity of AĜ and B, in Equation

(5.17).

Ĝpq =
R∑
r=1

Gpqr

FPSMij =


Ai. Ĝ

||Ai. Ĝ||
B′j.
||Bj.||

, if N(i, j) > 0

0, otherwise.

(5.17)

For coupled factorizations, we use the same equations. After coupled matrix-

matrix decomposition, we use Equation (5.16) to find the feature pattern similarity

matrix. For coupled matrix-tensor factorization, if CMTF PARAFAC ALS is used

for factorization, then FPSM is calculated using Equation (5.16). If CMTF Tucker -

ALS is used for factorization, then Equation (5.17) is used to calculate FPSM.

5.3.3.4 Density-invariant biclustering

In this section, we introduce a novel biclustering algorithm based on an existing

algorithm and several graph attributes. First, we discretize the input matrix and use

it as input to BiMax algorithm to find inclusion-maximal biclusters [60]. Then, we

use these biclusters as seed, and find density and variance of these biclusters, which

are bicliques. Finally, we find the density-invariant biclusters among candidate

inclusion-maximal biclusters.

Given the feature pattern similarity matrix X ∈ RI×J , we use density-invariant
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biclustering to find coherent biclusters. Let G = (U ,V ,E) represent a bipartite

graph, where U represents the set of genes, or rows in X, V represents the set of

conditions, or columns in X, and E represents the weight of the edges connecting

vertex set U and vertex set V . The weights E are equivalent to values of matrix X.

We want to find biclusters of the following form:

Bi = (Ui,Vi,Ei) (5.18)

where B =
n⋃
i=1

Bi is a biclustering of rows and columns of X. Each bicluster as-

sociates a set of rows, in this case spoligotypes, to a set of columns, in this case

countries. Notice that each bicluster maps to a submatrix of the original data ma-

trix.

Density-invariant biclustering algorithm first discretizes edge weights using a

weight threshold th, and converts the input matrix into a binary matrix D. Then

we use the binary inclusion-maximal biclustering algorithm (BiMax) by Prelic et al.

on this binary matrix and find a set of candidate biclusters [60]. These biclusters

are inclusion-maximal, because the submatrices corresponding to these biclusters

are all 1’s, and there is no other bicluster which is a superset of it. Output of BiMax

algorithm after discretization returns a good starting point for density-invariant bi-

clustering algorithm. Next, we focus on these candidate biclusters. For this purpose,

we define the density and variance of a graph.

Definition 1. Density of a graph: Density of a graph is the average weight of

its edges. Given a graph G = (V ,E) where w(e) represents the weight of edge e ∈ E,

the density of graph G is calculated as follows:

d(G) =

∑
e∈E

w(e)(|V |
2

) .

Definition 2. Variance of a graph: Variance of a graph is the standard deviation

of its edge weights. Given a graph G = (V ,E) where w(e) represents the weight of
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edge e ∈ E, the variance of graph G is calculated as follows:

v(G) =

√
1

|E| − 1

∑
e∈E

(w (e)− w̄)2 .

Using the density and variance of graphs, we can define a new set of graphs

which are bounded by their edge weights. Next, we define the α-dense β-variant bi-

clusters, or density-invariant biclusters, which are graphs of the form B = (U ,V ,E)

with density d(B) ≥ α and variance v(B) ≤ β, and similarly for all one-vertex-

induced subgraphs of B = (U ,V ,E).

Definition 3. Density-invariant bicluster: Let B = (U ,V ,E) be a bicluster,

where edges in E connect vertices in U to vertices in V . Bicluster B is an α-

dense bicluster if d(B) ≥ α, and it is a β-variant bicluster if v(B) ≤ β. Define

B′ as an induced subgraph of B after removing one vertex, either from vertex set U

or vertex set V . Bicluster B = (U ,V ,E) is an (α, β)-density-invariant bicluster,

or density-invariant bicluster, if B and all its one-vertex-induced subgraphs are α-

dense β-variant. In short, bicluster B is a density-invariant bicluster if the following

conditions hold:

1. d(B) ≥ α, v(B) ≤ β

2. d(B′) ≥ α, v(B′) ≤ β ∀B′ = B \ {m} where m ∈ U ∪ V , |B′| > 0 .

Notice that a density-invariant bicluster forms a biclique with average weight bounded

from below, and variance of weights bounded from above. All induced subgraphs ob-

tained after removing one vertex from a density-invariant bicluster are still α-dense

and β-variant, but not necessarily density-invariant biclusters. At this point, we

define strong antimonotonicity of a graph, which was introduced in Pao et al. [61].

Definition 4. Strong antimonotonicity: A graph attribute is strong antimono-

tone if for each graph G = (V ,E) with the attribute, every induced subgraph G′ =

G− {v} has the attribute, where v ∈ V .

According to the definition of strong antimonotonicity, the attribute of being

a density-invariant graph or bicluster is not strongly antimonotone. This is because
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the vertex-induced subgraphs of the original graph are α-dense and β-variant, but

their vertex-induced subgraphs need not be (α, β)-density-invariant biclusters.

Finally, we iterate over candidate biclusters found as output from BiMax algo-

rithm and find density-invariant biclusters among these candidate biclusters. This

results in strongly connected and more homogeneous biclusters. Algorithm 10 sum-

marizes DensityInvariantBiclustering procedure.

Algorithm 10 Biclusters = DensityInvariantBiclustering(X ∈ RI×J, th, α, β)

Input: Data matrix X ∈ RI×J , discretization threshold th, density threshold α, variance

threshold β.

Output: Density-invariant biclusters Biclusters.
1: D = discretize(X, th)
2: CandidateBiclusters = BiMax(D)
3: Biclusters = ∅
4: for i=1:1:length(CandidateBiclusters) do
5: B(U ,V ,E) = CandidateBiclusters(i)
6: check1 = (d(B) ≥ α) && (v(B) ≤ β)
7: check2 = true
8: M = U ∪ V
9: for j=1:1:length(M) do

10: m = M(j)
11: B′ = B \ {m}
12: if ((B′ 6= ∅) && ! (d(B′) ≥ α && v(B′) ≤ β)) then
13: check2 = false
14: break
15: end if
16: end for
17: if (check1 && check2) then
18: Biclusters = Biclusters ∪{B}
19: end if
20: end for

In DensityInvariantBiclustering algorithm, discretize(X, th) function

discretizes the input data matrix as follows:

Dij =

1, if Xij ≥ th

0, otherwise.

BiMax algorithm is run on this binary matrix D, and inclusion-maximal bi-
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clusters are obtained. Then, among these candidate biclusters, density-invariant

biclusters are found.

5.3.3.5 Statistically significant bicluster selection

In order to find statistically significant biclusters, we sample 90% of the pa-

tients, and rerun the biclustering algorithm, and obtain 20 new biclusterings. Then,

we calculate the stability of each density-invariant bicluster found in the previous

step using average best-match score. First, we calculate the match score of two bi-

clusters B1 = (G1,C1), B2 = (G2,C2), where G1, G2 represent gene sets and C1, C2

represent condition sets. Similar to Prelic et al. and Lie et al. [60, 151], the match

score of biclusters B1 = (G1,C1), B2 = (G2,C2) is calculated as follows:

match(B1,B2) =
|G1 ∩G2|+ |C1 ∩ C2|
|G1 ∪G2|+ |C1 ∪ C2|

. (5.19)

Let M =
k⋃
i=1

B∗i be a biclustering of the subsample of the dataset. We compare

a bicluster B = (G,C) to all biclusters in B∗i ∈M , and assign the maximum match

value as the best-match score:

best match(B,M =
k⋃
i=1

B∗i ) = max
B∗i ∈M

match(B,B∗i ) . (5.20)

Finally, we take the average best-match score of each bicluster B by comparing

them to each biclustering Mi, and obtain the average best-match score of bicluster

B as follows:

average best match(B,
n⋃
i=1

Mi) =

n∑
i=1

best match(B,Mi)

n
. (5.21)

We pick the biclusters with ≥ 95% average best-match score as statistically

significant biclusters, and evaluate their biological relevance. If there are no sig-

nificant biclusters, we report top 5 stable biclusters with their average best-match

scores.
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Table 5.1: Biclustering results for each data configuration, including
density-invariant biclustering algorithm parameters and num-
ber of density-invariant biclusters (DIB). For TBF, PARAFAC
and Tucker3 model, results are listed separately. Similarly, for
CMTBF, CMTF PARAFAC ALS and CMTF Tucker ALS,
results are listed separately. When there are no stable biclus-
ters with average best-match score ≥ 95%, five most stable
biclusters are picked as the stable biclusters.

# Configuration Method DIB parameters (th, α, β) # DIB
1 MBF 0.80, 0.80, 0.15 8

2 TBF (PARAFAC) 0.98, 0.89, 0.01 170
TBF (Tucker3) 0.60, 0.60, 0.40 5

3 CMTBFg (CMTF PARAFAC ALS) 0.60, 0.60, 0.40 0
CMTBFg (CMTF Tucker ALS) 0.70, 0.70, 0.30 4

4 CMTBFs (CMTF PARAFAC ALS) 0.80, 0.90, 0.10 21
CMTBFs (CMTF Tucker ALS) 0.80, 0.85, 0.15 6

5 CMTBFgs (CMTF PARAFAC ALS) 0.98, 0.99, 0.01 0
CMTBFgs (CMTF Tucker ALS) 0.60, 0.70,0.30 5

6 CMMBF 0.60, 0.60, 0.40 17

5.4 Results

In order to find host-pathogen associations in tuberculosis patient dataset,

we biclustered spoligotypes and countries using six different data configurations

shown in Figure 5.3. For each data configuration, we followed the steps of Unified

Biclustering Framework (UBF), and found the most stable biclusters. Table 5.1

shows the parameters of DensityInvariantBiclustering (th, α, β) and number

of density-invariant biclusters for each data configuration. Note that PARAFAC and

Tucker3 variants of TBF, CMTF PARAFAC ALS and CMTF Tucker ALS variants

of CMTBF are listed separately. Next, we evaluate the statistical significance and

biological relevance of biclusters for each data configuration, and find host-pathogen

associations within the whole patient dataset and within each major lineage.

5.4.1 Biclusters using spoligotypes and country of birth

We first contract and sum the host-pathogen tensor along the time mode

and find biclusters based on the distribution of spoligotypes to countries of birth,

as in data configuration 1 in Figure 5.3. In this setting, no distance measure or

time is added to the domain knowledge. Table 5.2 shows the density-invariant

biclusters. Bicluster B1 suggests that patients from Haiti are infected with ST1162
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Table 5.2: Biclustering results on data configuration 1 using UBF. Biclus-
ters associate spoligotypes to country of birth of patients. For
spoligotypes, SIT number, major lineage based on CBN, and
sublineage based on KBBN are listed. For countries, the name
and the TB continent are listed. Bicluster B16 represents the
well-known association between patients from Philippines and
EAI2-Manila strains.

Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B11 5
ST1162 East-Asian Beijing

Haiti Americas
ST398 Euro-American LAM4

B13 19

ST265 East-Asian Beijing

China East Asia

ST422 M. bovis BOV 1
ST89 Indo-Oceanic EAI5
ST287 Indo-Oceanic EAI2-Manila
ST1268 Euro-American T5
ST25 East-African Indian CAS1-Delhi
ST732 Euro-American T1

B14 6
ST1908 Euro-American H3

Ecuador Americas
ST58 Euro-American T5

B15 6
ST43 Indo-Oceanic EAI6-BGD1 Dominican

Americas
ST848 Euro-American T2 Republic
ST511 Euro-American H3

B16 2 ST897 Indo-Oceanic EAI2-Manila Philippines Southeast Asia
B17 2 ST447 Euro-American T1 Bangladesh Indian Subcontinent

B18 4
UST251 Euro-American S

Mexico Americas
ST1154 Euro-American LAM9

strain, a Beijing strain, and ST398, a LAM4 strain. Bicluster B12 is listed in

the supplementary material due to its size: http://tbinsight.cs.rpi.edu/UBFsupp.

rar. This bicluster contains 848 patients from United States who are infected with

63 different strains. One of these strains is the transmissive Beijing strain ST1

which initiated many outbreaks in United States [152, 153]. Bicluster B13 shows

that patients from China are infected with 7 different strains. Bicluster B14 shows

that ST1908 and ST58 are two Ecuadorian isolates belonging to Euro-American

lineage. Bicluster B16 is a well-known association, and suggests that patients from

Philippines are infected with an EAI2-Manila strain, ST897. Bicluster B18 suggests

that Mexican patients, as neighbours of United States, are infected with UST251

and ST1154, two Euro-American strains. The five most stable biclusters are B16,

B17, B18, B11, B14, and their average best-match scores are in the range [0.1667,

0.2]. One may argue that biclusters with few patients does not constitute a strong

host-pathogen association. This suggests that TB detection rate should be increased

to gather more patient data and make more accurate inferences on host-pathogen

association.

http://tbinsight.cs.rpi.edu/UBFsupp.rar
http://tbinsight.cs.rpi.edu/UBFsupp.rar
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5.4.2 Incorporating time

The original host-pathogen tensor has time as the third mode. Therefore,

when we found biclusters using the host-pathogen tensor as in data configuration 2

of Figure 5.3, we account for distribution of spoligotypes to countries of birth through

time, in this case years from 2001 to 2007. When we use PARAFAC to decompose

the host-pathogen tensor, we found 170 density-invariant biclusters. Here, we focus

on five most stable biclusters when PARAFAC model is used. Average best-match

scores of these five biclusters range from 0.6915 to 0.7295. The full list of these

biclusters can be found in the supplementary material. Bicluster B211 associates

Vietnamese patients to 11 strains belonging to Euro-American, East Asian, Indo-

Oceanic and East-African Indian lineages. Bicluster B212 suggests that patients

from Peru are infected with 17 different strains belonging to Euro-American, Indo-

Oceanic, and East Asian lineages. Bicluster B214 is shown in Table 5.3. There are

111 patients in bicluster B214 from India, Peru and Vietnam, which are infected

with 6 Euro-American strains and one East Asian strain. Notice that this East

Asian strain is ST1, which is the transmissive Beijing strain. This suggests that

some of the patients in this bicluster must be involved in the outbreaks in United

States initiated by ST1 Beijing strains.

When Tucker3 model is used to decompose the host-pathogen tensor, we find

5 density-invariant biclusters. Their average-best match scores range from 0.04 to

0.18, which shows that biclusters found using Tucker3 model are less stable compared

to the ones found using PARAFAC model. These five biclusters, bicluster B221 to

B225, are listed in the supplementary material. Bicluster B221 suggests that US

patients are infected with 31 different strains, and bicluster B222 suggests that

Chinese patients are infected with 11 strains belonging to Euro-American, East-

African Indian, and M. bovis lineages. Note that no East Asian strain is associated

with Chinese patients, which suggests that our biclustering analysis on the host-

pathogen tensor is introducing noise when time is added into domain knowledge.

Bicluster B225, also listed in Table 5.3, has 4 patients and suggests that Mexican

patients are infected with ST294, ST290 and ST176 strains, all members of Euro-

American lineage.
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Table 5.3: Biclustering results on data configuration 2 using PARAFAC
and Tucker3 models via UBF on the host-pathogen tensor. Bi-
cluster B214 associates patients from India, Peru and Vietnam
to 6 Euro-American strains and the transmissive East Asian
Beijing strain ST1. Bicluster B224 groups Mexican patients
infected with three different Euro-American strains.

Bicluster Number Spoligotypes Countries
of patients SIT no Major lineage Sublineage Name TB continent

B214 111 ST53 Euro-American T1 India Indian Subcontinent
ST17 Euro-American LAM2 Peru Americas
ST1 East Asian Beijing Vietnam Southeast Asia

ST197 Euro-American X3
ST61 Euro-American LAM10-CAM
ST119 Euro-American X1
ST42 Euro-American LAM9

B225 4
ST294 Euro-American H3

Mexico AmericasST290 Euro-American LAM9
ST176 Euro-American LAM6

5.4.3 Incorporating time and distance measures

Next, we concatenate distance matrices one at a time, and finally both of

them, to the host-pathogen tensor. Concatenation of genetic proximity matrix re-

sults in data configuration 3, concatenation of spatial proximity matrix results in

data configuration 4, and concatenation of both matrices results in data configu-

ration 5. We factorize these matrices using coupled matrix-tensor factorization via

CMTF PARAFAC ALS and CMTF Tucker ALS, and report statistically significant

and biologically relevant biclusters. The full list of biclusters can be found in the

supplementary material.

If we use genetic distance matrix only, factorization via CMTF PARAFAC -

ALS results in no density-invariant biclusters. When the coupled matrix-tensor is

decomposed via CMTF Tucker ALS, 4 stable clusters are found, the stability of

which range from 0.08 to 0.19. Two of these biclusters, B321 and B323, are listed

in Table 5.4. Bicluster B321 groups 32 patients from Ecuador, infected with ST53,

ST62, ST51, ST1908, which are all Euro-American strains. Notice that ST53 and

ST51 belong to T1 sublineage, which is a class of ill-defined Euro-American strains.

Bicluster B323 contains 4 patients from Mexico, all infected with ST52, a Euro-

American T2 strain.

If we use spatial distance matrix only, factorization via CMTF PARAFAC ALS

results in 21 density-invariant biclusters, and we picked 5 most stable biclusters

among them. The stability values of these biclusters range from 0.26 to 0.32. Table
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Table 5.4: Biclustering results on data configuration 3, 4, 5 using
CMTF PARAFAC ALS and CMTF Tucker ALS algorithms
via UBF on the coupled matrix-tensor. Biclusters B411 and
B412 suggests that Euro-American strains ST908 and ST904
infects patients from four spatially close countries in Amer-
icas respectively. Bicluster B421 suggests that transmissive
Beijing strain ST1 is wide-spread and infects patients from
three different TB continents. Bicluster B422 groups patients
from two neighbour countries, Malaysia and Philippines, who
are infected with Beijing strain ST1 and X2 strain ST38.

Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B321 32

ST53 Euro-American T1

Ecuador Americas
ST62 Euro-American H1
ST51 Euro-American T1

ST1908 Euro-American H3
B323 4 ST52 Euro-American T1 Mexico Americas

B411 6 ST908 Euro-American LAM2

Dominican Rep. Americas
Puerto Rico Americas

Trinidad and Tobago Americas
United States Americas

B412 6 ST904 Euro-American T5

Ecuador Americas
Haiti Americas

Trinidad and Tobago Americas
United States Americas

B414 6
ST904 Euro-American T5 Trinidad and Tobago Americas
ST908 Euro-American LAM2 United States Americas

B421 32 ST1 East Asian Beijing

Taiwan East Asia
Barbados Americas
Dominica Americas
Malaysia Southeast Asia
Myanmar Southeast Asia
Philippines Southeast Asia

B422 27
ST1 East Asian Beijing Malaysia Southeast Asia
ST38 Euro-American X2 Philippines Americas

B425 2 ST93 Euro-American LAM5 Honduras Americas

B525 11

ST167 Euro-American T1

Haiti Americas

ST42 Euro-American LAM9
ST57 Euro-American LAM10-CAM
ST904 Euro-American T5
ST187 M. africanum AFRI 1
ST1867 M. africanum AFRI 1

5.4 shows 3 of these biclusters. Bicluster B411 suggests that Euro-American LAM2

strain ST908 infects patients from Dominican Republic, Puerto Rico, Trinidad To-

bago, and Unites States, all from Americas. Notice how geographically close coun-

tries are collected together in a bicluster in the host-pathogen association analysis

by incorporating spatial proximity into domain knowledge. Bicluster B412 suggests

that Euro-American T5 strain ST904 infects patients from Ecuador, Haiti, Trinidad

Tobago, and United States, which are again all in Americas. Bicluster B414 includes

strains of both Bicluster B411 and B412, and combines the two common countries

in these biclusters. It suggests that Euro-American T5 strain ST904 and Euro-

American LAM2 strain ST908 infect patients from Trinidad Tobago and United

States. When we factorize the coupled matrix-tensor via CMTF Tucker ALS in
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UBF, 6 density-invariant biclusters are found, and we picked 5 most stable biclus-

ters among them, with average best-match score ranging from 0.09 to 0.50. Table

5.4 shows 3 of these biclusters. Bicluster B421 points out that transmissive ST1

Beijing strain is wide-spread, and it infects patients from Taiwan, Barbados, Do-

minica, Malaysia, Myanmar, and Philippines, which cover 3 different TB continents:

East Asia, Americas, and Southeast Asia. This shows that, even if we use spatial

proximity matrix to narrow down transmission events, transmissive ST1 strain is

still associated with patients from multiple TB continents. Bicluster B422 contains

27 patients from Philippines and Malaysia, both from Southeast Asia, which are

infected with ST1 and ST38 strains. Notice how these countries are grouped to-

gether using the spatial proximity matrix. Bicluster B425 consists of 2 patients

from Honduras, both infected with Euro-American LAM5 strain ST93.

If we concatenate both genetic and spatial proximity matrices, factorization

via CMTF PARAFAC ALS does not assign any density-invariant biclusters. When

the coupled matrix-tensor is decomposed via CMTF Tucker ALS, we find 5 density-

invariant biclusters, with average best-match score values ranging from 0.11 to 0.30.

Table 5.4 shows one of these biclusters. Bicluster B525 contains 11 patients from

Haiti which are infected with Euro-American strains ST167, ST42, ST57, ST904,

and M. africanum AFRI 1 strains ST187 and ST1867. The full list of biclusters can

be found in supplementary material. Notice that there is no order in stability of bi-

clusters found using CMTF PARAFAC ALS and CMTF Tucker ALS. However, bi-

clusters found using CMTF Tucker ALS are more biologically coherent. This shows

that that high stability does not imply biological relevance.

5.4.4 Incorporating distance, but not time

Finally, in the last data configuration, we use genetic distance, spatial distance,

but not time. This reduces the mutation path length and transmission path length,

which increases the likelihood of mutation between the set of strains and transmis-

sion between the set of patients. To do so, we contract and sum the host-pathogen

tensor along the time mode, and concatenate the genetic proximity matrix and spa-

tial proximity matrix. We bicluster spoligotypes and countries using CMMF ALS
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Table 5.5: Biclustering results on data configuration 6 using CMMF ALS
via UBF on the coupled matrix-matrix. Bicluster B64 groups
patients from Bangladesh who are infected with two strains of
ill-defined sublineages: Indo-Oceanic EAI5 strain ST1391 and
Euro-American T1 strain ST58.

Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B64 3
ST1391 Indo-Oceanic EAI5

Bangladesh Indian Subcontinent
ST58 Euro-American T1

B66 19

ST1162 East Asian Beijing

Haiti Americas

ST168 Euro-American H3
ST398 Euro-American LAM4
ST57 Euro-American LAM10-CAM
ST874 Euro-American S
UST256 Euro-American H1
ST541 East Asian Beijing
ST1867 M. africanum AFRI 1
ST822 Euro-American LAM9
ST546 Euro-American X3
ST3 Euro-American LAM2

on this dataset in UBF. There are 17 density-invariant biclusters, and we picked the

ones with average best-match score of 90% and above. Full list of these biclusters

are in the supplementary material. Table 5.5 shows two of these biclusters, B64 and

B66. Bicluster B64 contains 3 patients from Bangladesh infected with Indo-Oceanic

EAI5 strain ST1391 and Euro-American T1 strain ST447. Notice that EAI5 is a

generic sublineage of Indo-Oceanic lineage, and T1 is a generic sublineage of Euro-

American lineage, and they are both ill-defined. Bicluster B66 contains 19 patients

from Haiti infected with Euro-American, East Asian and M. africanum strains.

Haiti is an island next to Dominican Republic and immigrants of Haiti must have

brought strains belonging to various lineages.

5.4.5 Host-pathogen association within each major lineage

The six phylogeographic major lineages determined by CBN are established.

Therefore, we subdivide the patient dataset based on six major lineages, and run

UBF on each of them. We used data configuration 6, since it resulted in both stable

and biologically relevant biclusters in the complete patient dataset. We found the

most stable host-pathogen associations for each major lineage and reported their

biological relevance.

Table 5.6 shows some of the most stable and biologically relevant biclusters.

The full list of biclusters can be found in the supplementary material. Bicluster B711

of Euro-American lineage in the list of supplementary material contains 628 US pa-



124

Table 5.6: Biclustering results on data configuration 6 using CMMF ALS
via UBF on the coupled matrix-matrix for each major lineage.
Bicluster B712 suggests that Mexican patients are likely to
be infected with UST251, ST478, and ST1154 strains, given
that the pathogen is a Euro-American strain. Bicluster B742
groups 212 US patients and shows that US patients are com-
monly infected with Beijing strains, including the transmissive
ST1 strain. 291 patients in bicluster B743 shows that Beijing
strains ST260, ST265 and the transmissive ST1 strain infects
both Chinese and US patients. Biclusters B761 and B762 sug-
gest that, given that MTBC is an M. bovis strain, it is more
likely to infect a patient from Dominican Republic if it is a
BOV or BOV 1 strain, and more likely to infect a US patient
if it is a BOV 2 strain.

Bicluster
Number Spoligotypes Countries

of patients SIT no Major lineage Sublineage Name TB continent

B712 5
UST251 Euro-American S

Mexico AmericasST478 Euro-American X2
ST1154 Euro-American LAM9

B732 9

ST471 East-African Indian CAS1-Delhi

China East Asia

ST25 East-African Indian CAS1-Delhi
ST381 East-African Indian CAS1-Delhi
ST21 East-African Indian CAS
ST203 East-African Indian CAS
UST167 East-African Indian EAI5

B733 11

ST381 East-African Indian CAS1-Delhi
ST25 East-African Indian CAS1-Delhi China East Asia
ST21 East-African Indian CAS Dominican Republic Americas

UST167 East-African Indian EAI5

B741 7

ST1162 East Asian Beijing

Haiti Americas
ST941 East Asian Beijing
ST541 East Asian Beijing
ST1168 East Asian Beijing

B742 212

UST1 East Asian Beijing

United States Americas

ST255 East Asian Beijing
ST260 East Asian Beijing
ST941 East Asian Beijing
ST265 East Asian Beijing
ST190 East Asian Beijing
ST1 East Asian Beijing

B743 291
ST260 East Asian Beijing

China East Asia
ST265 East Asian Beijing

United States Americas
ST1 East Asian Beijing

B751 17

ST325 M. africanum AFRI 1

United States Americas

ST326 M. africanum AFRI 1
ST187 M. africanum AFRI 1
ST181 M. africanum AFRI 1
ST319 M. africanum AFRI 2
ST331 M. africanum AFRI 2
UST229 M. africanum AFRI 2

B761 3
ST479 M. bovis BOV

Dominican Republic Americas
ST481 M. bovis BOV 1

B762 9
ST409 M. bovis BOV 2

United States Americas
ST683 M. bovis BOV 2

tients infected with 61 different strains. Bicluster B712 listed in Table 5.6 suggests a

strong association between Mexican patients and pathogens of three Euro-American

strains, S strain UST251, X2 strain ST478, and LAM9 strain ST1154. Notice that

all strains belong to different sublineages of Euro-American lineage. The average

best-match score of this bicluster is 0.7783. Bicluster B721 of Indo-Oceanic lineage

listed in the supplementary material suggests an association between 40 Chinese pa-
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tients and 16 different Indo-Oceanic strains, belonging to various sublineages. The

stability value of 0.9621 suggests that this is a strong host-pathogen association.

Bicluster B732 listed in Table 5.6 contains 9 Chinese patients infected with

CAS1-Delhi, CAS and EAI5 strains of East-African Indian lineage. Similarly, bi-

cluster B733 suggests that patients from China and Dominican Republic are likely

to be infected with the following East-African Indian strains: CAS1-Delhi strains

ST381 and ST25, CAS strain ST21, and EAI5 strain UST167. Bicluster B741 sug-

gests that Haitian patients are infected with the following Beijing strains: ST1162,

ST941, ST541, ST1168. Similarly, 212 US patients in bicluster B742 suggests that

US patients are infected commonly with the following Beijing strains: UST1, ST255,

ST260, ST941, ST265, ST190, and the transmissive ST1 strain. 291 patients in

bicluster B743 suggest that both Chinese and US patients are infected with the

following Beijing strains very frequently: ST260, ST265, and the transmissive ST1

strain. This shows that Beijing strains brought to the US by Chinese immigrants

infect both Chinese and US patients in the US.

Bicluster B751 shows that US patients are infected with AFRI 1 strains ST325,

ST326, ST187, ST181 and AFRI 2 strains ST319, ST331, UST229 of M. africanum

lineage. Bicluster B761 suggests that patients from Dominican Republic are likely

to be infected with BOV strain ST479 and BOV 1 strain ST481 belonging to M.

bovis lineage. On the other hand, bicluster B762 suggests that US patients are

infected BOV 2 strains ST409 and ST683 belonging to M. bovis lineage. These two

biclusters suggest that, given an M. bovis strain, it is likely to infect a patient from

Dominican Republic if it is a BOV or BOV 1 strain, whereas it is more likely to

have infected a US patient if the strain is a BOV 2 strain.

5.5 Discussion and Conclusion

We developed the Unified Biclustering Framework (UBF) to find host-pathogen

associations in tuberculosis patients. To our knowledge, this is the first study to

restate host-pathogen association analysis as a biclustering problem. UBF is flexible

in the sense that distance and time can be added into domain knowledge of data

analysis via coupled matrix-matrix and matrix-tensor factorization. This enables
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genome-phenome data fusion in one unsupervised learning framework.

Each bicluster refers to a possible host-pathogen association. We found sta-

tistically significant biclusters, some of which represent well-known host-pathogen

relationships and some of which reveal new associations. For instance, bicluster B16

shows the well-known association of patients from Philippines and EAI2-Manila

strains. Similarly, biclusters B742 and B743 shows that many US patients are in-

fected with Beijing strains including ST1 strain, a well-known initiator of many out-

breaks in the US. On the other hand, we also found new patient-strain relationships

via genome-phenome data fusion by adding genetic proximity, spatial proximity and

time into domain knowledge. For instance, bicluster B422 groups patients from two

neighbour countries, Malaysia and Philippines, who are infected with Beijing strain

ST1 and X2 strain ST38. Biclusters B761 and B762 suggest that patients from

Dominican Republic are infected with BOV and BOV 1 strains of M. bovis lineage,

whereas US patients are infected with BOV 2 strains of M. bovis lineage. Note that

although we picked statistically significant biclusters, statistical significance does

not imply biological relevance [154]. However, these new stable biclusters lead to

new host-pathogen associations.

Host-pathogen association analysis can be extended by adding new patient and

strain attributes. As future work, we will add MIRU and RFLP, two biomarkers of

MTBC, into this analysis. In addition, we will add other patient attributes such as

age group, ethnicity, homelessness and other risk factors of TB. We will also speed

up UBF using line search in ALS-based coupled factorization algorithms. This will

enhance both the speed and accuracy of coupled factorizations, which will lead to

more accurate host-pathogen associations.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis made three contributions to algorithmic data fusion methods in order

to utilize multiple sources of information from MTBC strains and TB patients. In

the first one, we used multiple biomarkers of MTBC in one clustering framework

and subdivided major lineages into sublineages. Next, we used multiple biomarkers

of MTBC to examine the evolution of spoligotypes. Finally, we combined genomic

data from MTBC strains and phenomic data from TB patients via one biclustering

framework, and detected host-pathogen associations.

First, we subdivided major lineages of MTBC into sublineages using the Tensor

Clustering Framework (TCF) on multiple-biomarker tensors (MBT). The multiple-

biomarker tensor holds data from two biomarkers, spoligotypes and MIRU patterns.

We factorize the multiple-biomarker tensor into its components using multiway mod-

els. We use the factor matrix for strain mode as input to our improved k-means

algorithm. Then, we cluster MTBC strains into sublineages. Our new definition of

sublineages based on two biomarkers confirm some of the existing sublineages, and

suggests subdividing or merging other sublineages.

Second, we built a new mutation model for spoligotypes based on two biomark-

ers of MTBC, spoligotypes themselves and MIRU patterns. The model uses a max-

imum parsimony method based on three genetic distance measures on two biomark-

ers. The resulting spoligoforest shows the mutation history of spoligotypes. Based

on the topology of the spoligoforest, number of descendant spoligotypes follows a

power-law distribution. In addition, number of mutations at each spacer in the

DR region follows a spatially bimodal distribution. Based on this observation, we

built two alternative models for mutation length frequency: Starting Point Model

(SPM) and Longest Block Model (LBM). Both models plausibly fit mutation length

frequency distribution in the spoligoforest.

Third, we detected host-pathogen associations in tuberculosis patients via

genome-phenome data fusion using the Unified Biclustering Framework (UBF). We

127
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first restate host-pathogen association analysis as a biclustering problem, and then

use the Unified Biclustering Framework to find statistically significant biclusters

which represent pairs of spoligotype sets and country sets. We incorporate ge-

netic distance between MTBC strains, spatial distance between TB patients, and

time into domain knowledge, and factorize the joint datasets via coupled matrix-

matrix and matrix-tensor factorization. We calculate the feature pattern similarity

of spoligotype-country pairs and use this feature pattern similarity matrix as in-

put to our novel density-invariant biclustering algorithm. Finally, we use average

best-match score to find stable biclusters. The resulting biclusters verify some of

the well-known associations between MTBC strains and geographic distribution of

their hosts. Other biclusters suggest new associations to be investigated further by

biologists.

Several aspects of these algorithmic data fusion methods can lead to new

research problems. Next, we briefly describe two promising future directions in this

research area.

6.1 Non-deterministic tensor decomposition

In the Tensor Clustering Framework (TCF) and Unified Biclustering Frame-

work (UBF), we fit multiway models to tensors. Among these models, commonly

used PARAFAC model is based on alternating least squares (ALS) method. How-

ever, ALS has drawbacks: It can fall into local minima, converge slowly, and can not

recover the factor matrices accurately in the case of overfactoring. We aim to build

a non-deterministic tensor decomposition algorithm to perform the same task with

higher accuracy by escaping possible local minima to find global minima. We solve

the permutation indeterminacy problem of PARAFAC model using factor match

score defined by Acar et al. [79]. We also aim to solve the scaling indeterminacy

problem by adding a Tikhonov regularization term to the original loss function of

PARAFAC model.

In our initial experimental setup, we generated synthetic datasets in the form of

tensors with varying size, rank, collinearity, homoscedastic noise level (i.e. constant

variance, Gaussian noise), and heteroscedastic noise level (i.e. differing variance,
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Poisson noise). We also collected two real datasets: the fluorescence data analyzed

by Riu and Bro [155], and multiple-biomarker tensor for M. africanum lineage which

we used in sublineage structure analysis of MTBC in Chapter 3 [23]. Our initial

algorithm to solve the non-deterministic tensor decomposition problem is Simulated

Annealing with Adaptive Stepsize (SAAS). We start with initial factor matrices

found by HOSVD, then we make the next move at a random direction. If the

loss value decreases, we accept the next state, double the step size and move in

the same direction in the next move. If the loss value increases, then we accept

the next state with a probability depending on the temperature of the system,

and step size remains constant. Otherwise, the new state is rejected and another

random direction is picked. The step size is halved only when the temperature of

the system is dropped. Our initial tests with this algorithm accurately decompose

tensors when there is no homoscedastic or heteroscedastic noise, comparably as good

as PARAFAC-ALS. When there is noise in the tensor, the performance of SAAS

drastically drops and it can not recover the factor matrices, whereas PARAFAC-ALS

can recover the factor matrices accurately, especially when there is no heteroscedastic

noise. The shortcoming of our SAAS algorithm stems from the fact that it performs

an exhaustive random search in continuous space, where there are infinitely many

directions for the next move, and only a subset of all directions can lead to global

minima. Moreover, SAAS algorithm is sensitive to noise. This suggests that we

need to auto-tune the Tikhonov regularization constant based on the noise type and

level of the tensor.

Fitting PARAFAC model is a nonlinear optimization problem which comes

with several challenges. One factor affecting the speed of convergence of the ten-

sor decomposition algorithms is the collinearity between the factors. Similarly, two

factors which are collinear but have opposite signs can cancel out each other’s contri-

bution, which is also known as two-factor degeneracy [156]. This problem causes the

loss function to decrease very slowly, while still not converging to global minimum.

To speed up the algorithm, regularization and line search was suggested in earlier

studies [157, 158]. Another particular case when PARAFAC-ALS fails to recover

component matrices is the case of overfactoring. When more components than the
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rank of the tensor are used to decompose the tensor, PARAFAC-ALS fails most

of the time [79]. Therefore, the need for a non-deterministic tensor decomposition

method which solves the overfactoring problem constitutes another open research

direction.

Extensions of non-deterministic tensor decomposition with various constraints

also lead to new research directions. Many of the real-world data, including tuber-

culosis patients datasets used in this thesis, are nonnegative, and the corresponding

component matrices have a physical meaning only when they are nonnegative [76].

Therefore, non-deterministic tensor decomposition with nonnegativity constraints

on factor matrices are desirable. Similarly, multi-dimensional biological datasets

are usually sparse. Therefore, sparse non-deterministic tensor decomposition meth-

ods are also beneficial and can lead to more accurate tensor factorizations [159].

Finally, datasets come with different forms of noise. Therefore, it is highly desirable

to build a model selection framework for non-deterministic tensor decomposition in

order to handle various noise types [76].

6.2 Host-pathogen association analysis

We restated host-pathogen association analysis as a biclustering problem ear-

lier in Chapter 5 of this thesis. We can incorporate additional information from

MTBC strains and TB patients in the joint dataset and factorize this dataset using

the Unified Biclustering Framework. We can add other biomarkers of MTBC strains

into domain knowledge such as MIRU and RFLP. We can also add new patient at-

tributes such as risk factors including age group, homelessness, HIV status, MDR

status, and ethnicity.

Transmission routes of tuberculosis follow the immigration map rather than

the world map. Therefore, spatial proximity matrix can result in misleading results,

e.g. US and Chinese patients can not be infected with the same strain based on the

world map, but indeed they are infected due to immigration of Chinese population

to the United States. On the other hand, an accurate immigration map reflecting

the frequency of immigration routes between countries is hard to find, which is a

data gathering problem. Therefore, if we base the spatial proximity matrix on the
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immigration map, we can accurately favor more likely transmission events.

Data factorization step in the Unified Biclustering Framework can be improved

as well. ALS-based coupled matrix-matrix and matrix-tensor factorization algo-

rithms we proposed in this thesis can be sped up using line search. This improve-

ment on the speed will also improve the accuracy, since one of the convergence

criterion of ALS is the maximum number of iterations, and line search increases the

amount of movement at each step of ALS. This results in faster convergence to more

accurate solutions.

We can also cluster genes based on their distribution to countries and number

of patients they infected in each country. We can compare these clustering results

to obtained biclustering results. We can consider the clustering result as the ground

truth for classification of spoligotypes, and use it as part of an external measure

such as F-measure in bicluster validation step. This will base statistically significant

bicluster selection on an external measure instead of an internal measure, which can

lead to improved bicluster selection. In the presence of limited ground truth for

biclusters, we can also use semi-supervised biclustering to find new host-pathogen

associations [160]. That will improve the quality of identified biclusters and lead to

more coherent patient-strain relationships.
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